| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cchhl.c |  |-  C = ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) | 
						
							| 2 |  | cchhllemOLD.2 |  |-  E = Slot N | 
						
							| 3 |  | cchhllemOLD.3 |  |-  N e. NN | 
						
							| 4 |  | cchhllemOLD.4 |  |-  ( N < 5 \/ 8 < N ) | 
						
							| 5 | 2 3 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 6 |  | 5lt8 |  |-  5 < 8 | 
						
							| 7 | 3 | nnrei |  |-  N e. RR | 
						
							| 8 |  | 5re |  |-  5 e. RR | 
						
							| 9 |  | 8re |  |-  8 e. RR | 
						
							| 10 | 7 8 9 | lttri |  |-  ( ( N < 5 /\ 5 < 8 ) -> N < 8 ) | 
						
							| 11 | 6 10 | mpan2 |  |-  ( N < 5 -> N < 8 ) | 
						
							| 12 | 7 9 | ltnei |  |-  ( N < 8 -> 8 =/= N ) | 
						
							| 13 | 11 12 | syl |  |-  ( N < 5 -> 8 =/= N ) | 
						
							| 14 | 13 | necomd |  |-  ( N < 5 -> N =/= 8 ) | 
						
							| 15 | 9 7 | ltnei |  |-  ( 8 < N -> N =/= 8 ) | 
						
							| 16 | 14 15 | jaoi |  |-  ( ( N < 5 \/ 8 < N ) -> N =/= 8 ) | 
						
							| 17 | 4 16 | ax-mp |  |-  N =/= 8 | 
						
							| 18 | 2 3 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 19 |  | ipndx |  |-  ( .i ` ndx ) = 8 | 
						
							| 20 | 18 19 | neeq12i |  |-  ( ( E ` ndx ) =/= ( .i ` ndx ) <-> N =/= 8 ) | 
						
							| 21 | 17 20 | mpbir |  |-  ( E ` ndx ) =/= ( .i ` ndx ) | 
						
							| 22 | 5 21 | setsnid |  |-  ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) | 
						
							| 23 |  | eqidd |  |-  ( T. -> ( ( subringAlg ` CCfld ) ` RR ) = ( ( subringAlg ` CCfld ) ` RR ) ) | 
						
							| 24 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 25 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 26 | 24 25 | sseqtri |  |-  RR C_ ( Base ` CCfld ) | 
						
							| 27 | 26 | a1i |  |-  ( T. -> RR C_ ( Base ` CCfld ) ) | 
						
							| 28 | 23 27 2 3 4 | sralemOLD |  |-  ( T. -> ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) ) | 
						
							| 29 | 28 | mptru |  |-  ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) | 
						
							| 30 | 1 | fveq2i |  |-  ( E ` C ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) | 
						
							| 31 | 22 29 30 | 3eqtr4i |  |-  ( E ` CCfld ) = ( E ` C ) |