Step |
Hyp |
Ref |
Expression |
1 |
|
cchhl.c |
|- C = ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) |
2 |
|
cchhllemOLD.2 |
|- E = Slot N |
3 |
|
cchhllemOLD.3 |
|- N e. NN |
4 |
|
cchhllemOLD.4 |
|- ( N < 5 \/ 8 < N ) |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
|
5lt8 |
|- 5 < 8 |
7 |
3
|
nnrei |
|- N e. RR |
8 |
|
5re |
|- 5 e. RR |
9 |
|
8re |
|- 8 e. RR |
10 |
7 8 9
|
lttri |
|- ( ( N < 5 /\ 5 < 8 ) -> N < 8 ) |
11 |
6 10
|
mpan2 |
|- ( N < 5 -> N < 8 ) |
12 |
7 9
|
ltnei |
|- ( N < 8 -> 8 =/= N ) |
13 |
11 12
|
syl |
|- ( N < 5 -> 8 =/= N ) |
14 |
13
|
necomd |
|- ( N < 5 -> N =/= 8 ) |
15 |
9 7
|
ltnei |
|- ( 8 < N -> N =/= 8 ) |
16 |
14 15
|
jaoi |
|- ( ( N < 5 \/ 8 < N ) -> N =/= 8 ) |
17 |
4 16
|
ax-mp |
|- N =/= 8 |
18 |
2 3
|
ndxarg |
|- ( E ` ndx ) = N |
19 |
|
ipndx |
|- ( .i ` ndx ) = 8 |
20 |
18 19
|
neeq12i |
|- ( ( E ` ndx ) =/= ( .i ` ndx ) <-> N =/= 8 ) |
21 |
17 20
|
mpbir |
|- ( E ` ndx ) =/= ( .i ` ndx ) |
22 |
5 21
|
setsnid |
|- ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) |
23 |
|
eqidd |
|- ( T. -> ( ( subringAlg ` CCfld ) ` RR ) = ( ( subringAlg ` CCfld ) ` RR ) ) |
24 |
|
ax-resscn |
|- RR C_ CC |
25 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
26 |
24 25
|
sseqtri |
|- RR C_ ( Base ` CCfld ) |
27 |
26
|
a1i |
|- ( T. -> RR C_ ( Base ` CCfld ) ) |
28 |
23 27 2 3 4
|
sralemOLD |
|- ( T. -> ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) ) |
29 |
28
|
mptru |
|- ( E ` CCfld ) = ( E ` ( ( subringAlg ` CCfld ) ` RR ) ) |
30 |
1
|
fveq2i |
|- ( E ` C ) = ( E ` ( ( ( subringAlg ` CCfld ) ` RR ) sSet <. ( .i ` ndx ) , ( x e. CC , y e. CC |-> ( x x. ( * ` y ) ) ) >. ) ) |
31 |
22 29 30
|
3eqtr4i |
|- ( E ` CCfld ) = ( E ` C ) |