| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cchhl.c | ⊢ 𝐶  =  ( ( ( subringAlg  ‘ ℂfld ) ‘ ℝ )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( 𝑥  ·  ( ∗ ‘ 𝑦 ) ) ) 〉 ) | 
						
							| 2 |  | cchhllemOLD.2 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 3 |  | cchhllemOLD.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | cchhllemOLD.4 | ⊢ ( 𝑁  <  5  ∨  8  <  𝑁 ) | 
						
							| 5 | 2 3 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 6 |  | 5lt8 | ⊢ 5  <  8 | 
						
							| 7 | 3 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 8 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 9 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 10 | 7 8 9 | lttri | ⊢ ( ( 𝑁  <  5  ∧  5  <  8 )  →  𝑁  <  8 ) | 
						
							| 11 | 6 10 | mpan2 | ⊢ ( 𝑁  <  5  →  𝑁  <  8 ) | 
						
							| 12 | 7 9 | ltnei | ⊢ ( 𝑁  <  8  →  8  ≠  𝑁 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑁  <  5  →  8  ≠  𝑁 ) | 
						
							| 14 | 13 | necomd | ⊢ ( 𝑁  <  5  →  𝑁  ≠  8 ) | 
						
							| 15 | 9 7 | ltnei | ⊢ ( 8  <  𝑁  →  𝑁  ≠  8 ) | 
						
							| 16 | 14 15 | jaoi | ⊢ ( ( 𝑁  <  5  ∨  8  <  𝑁 )  →  𝑁  ≠  8 ) | 
						
							| 17 | 4 16 | ax-mp | ⊢ 𝑁  ≠  8 | 
						
							| 18 | 2 3 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 19 |  | ipndx | ⊢ ( ·𝑖 ‘ ndx )  =  8 | 
						
							| 20 | 18 19 | neeq12i | ⊢ ( ( 𝐸 ‘ ndx )  ≠  ( ·𝑖 ‘ ndx )  ↔  𝑁  ≠  8 ) | 
						
							| 21 | 17 20 | mpbir | ⊢ ( 𝐸 ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) | 
						
							| 22 | 5 21 | setsnid | ⊢ ( 𝐸 ‘ ( ( subringAlg  ‘ ℂfld ) ‘ ℝ ) )  =  ( 𝐸 ‘ ( ( ( subringAlg  ‘ ℂfld ) ‘ ℝ )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( 𝑥  ·  ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) | 
						
							| 23 |  | eqidd | ⊢ ( ⊤  →  ( ( subringAlg  ‘ ℂfld ) ‘ ℝ )  =  ( ( subringAlg  ‘ ℂfld ) ‘ ℝ ) ) | 
						
							| 24 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 25 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 26 | 24 25 | sseqtri | ⊢ ℝ  ⊆  ( Base ‘ ℂfld ) | 
						
							| 27 | 26 | a1i | ⊢ ( ⊤  →  ℝ  ⊆  ( Base ‘ ℂfld ) ) | 
						
							| 28 | 23 27 2 3 4 | sralemOLD | ⊢ ( ⊤  →  ( 𝐸 ‘ ℂfld )  =  ( 𝐸 ‘ ( ( subringAlg  ‘ ℂfld ) ‘ ℝ ) ) ) | 
						
							| 29 | 28 | mptru | ⊢ ( 𝐸 ‘ ℂfld )  =  ( 𝐸 ‘ ( ( subringAlg  ‘ ℂfld ) ‘ ℝ ) ) | 
						
							| 30 | 1 | fveq2i | ⊢ ( 𝐸 ‘ 𝐶 )  =  ( 𝐸 ‘ ( ( ( subringAlg  ‘ ℂfld ) ‘ ℝ )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℂ  ↦  ( 𝑥  ·  ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) | 
						
							| 31 | 22 29 30 | 3eqtr4i | ⊢ ( 𝐸 ‘ ℂfld )  =  ( 𝐸 ‘ 𝐶 ) |