Step |
Hyp |
Ref |
Expression |
1 |
|
cchhl.c |
⊢ 𝐶 = ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) |
2 |
|
cchhllemOLD.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
cchhllemOLD.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
cchhllemOLD.4 |
⊢ ( 𝑁 < 5 ∨ 8 < 𝑁 ) |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
|
5lt8 |
⊢ 5 < 8 |
7 |
3
|
nnrei |
⊢ 𝑁 ∈ ℝ |
8 |
|
5re |
⊢ 5 ∈ ℝ |
9 |
|
8re |
⊢ 8 ∈ ℝ |
10 |
7 8 9
|
lttri |
⊢ ( ( 𝑁 < 5 ∧ 5 < 8 ) → 𝑁 < 8 ) |
11 |
6 10
|
mpan2 |
⊢ ( 𝑁 < 5 → 𝑁 < 8 ) |
12 |
7 9
|
ltnei |
⊢ ( 𝑁 < 8 → 8 ≠ 𝑁 ) |
13 |
11 12
|
syl |
⊢ ( 𝑁 < 5 → 8 ≠ 𝑁 ) |
14 |
13
|
necomd |
⊢ ( 𝑁 < 5 → 𝑁 ≠ 8 ) |
15 |
9 7
|
ltnei |
⊢ ( 8 < 𝑁 → 𝑁 ≠ 8 ) |
16 |
14 15
|
jaoi |
⊢ ( ( 𝑁 < 5 ∨ 8 < 𝑁 ) → 𝑁 ≠ 8 ) |
17 |
4 16
|
ax-mp |
⊢ 𝑁 ≠ 8 |
18 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
19 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
20 |
18 19
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 𝑁 ≠ 8 ) |
21 |
17 20
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
22 |
5 21
|
setsnid |
⊢ ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) |
23 |
|
eqidd |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
25 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
26 |
24 25
|
sseqtri |
⊢ ℝ ⊆ ( Base ‘ ℂfld ) |
27 |
26
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℂfld ) ) |
28 |
23 27 2 3 4
|
sralemOLD |
⊢ ( ⊤ → ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
29 |
28
|
mptru |
⊢ ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
30 |
1
|
fveq2i |
⊢ ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) |
31 |
22 29 30
|
3eqtr4i |
⊢ ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ 𝐶 ) |