Metamath Proof Explorer


Theorem cchhllem

Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019)

Ref Expression
Hypotheses cchhl.c 𝐶 = ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ⟩ )
cchhllem.2 𝐸 = Slot 𝑁
cchhllem.3 𝑁 ∈ ℕ
cchhllem.4 ( 𝑁 < 5 ∨ 8 < 𝑁 )
Assertion cchhllem ( 𝐸 ‘ ℂfld ) = ( 𝐸𝐶 )

Proof

Step Hyp Ref Expression
1 cchhl.c 𝐶 = ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ⟩ )
2 cchhllem.2 𝐸 = Slot 𝑁
3 cchhllem.3 𝑁 ∈ ℕ
4 cchhllem.4 ( 𝑁 < 5 ∨ 8 < 𝑁 )
5 2 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
6 5lt8 5 < 8
7 3 nnrei 𝑁 ∈ ℝ
8 5re 5 ∈ ℝ
9 8re 8 ∈ ℝ
10 7 8 9 lttri ( ( 𝑁 < 5 ∧ 5 < 8 ) → 𝑁 < 8 )
11 6 10 mpan2 ( 𝑁 < 5 → 𝑁 < 8 )
12 7 9 ltnei ( 𝑁 < 8 → 8 ≠ 𝑁 )
13 11 12 syl ( 𝑁 < 5 → 8 ≠ 𝑁 )
14 13 necomd ( 𝑁 < 5 → 𝑁 ≠ 8 )
15 9 7 ltnei ( 8 < 𝑁𝑁 ≠ 8 )
16 14 15 jaoi ( ( 𝑁 < 5 ∨ 8 < 𝑁 ) → 𝑁 ≠ 8 )
17 4 16 ax-mp 𝑁 ≠ 8
18 2 3 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
19 ipndx ( ·𝑖 ‘ ndx ) = 8
20 18 19 neeq12i ( ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 𝑁 ≠ 8 )
21 17 20 mpbir ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx )
22 5 21 setsnid ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ⟩ ) )
23 eqidd ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) )
24 ax-resscn ℝ ⊆ ℂ
25 cnfldbas ℂ = ( Base ‘ ℂfld )
26 24 25 sseqtri ℝ ⊆ ( Base ‘ ℂfld )
27 26 a1i ( ⊤ → ℝ ⊆ ( Base ‘ ℂfld ) )
28 23 27 2 3 4 sralem ( ⊤ → ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) )
29 28 mptru ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) )
30 1 fveq2i ( 𝐸𝐶 ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ⟩ ) )
31 22 29 30 3eqtr4i ( 𝐸 ‘ ℂfld ) = ( 𝐸𝐶 )