Step |
Hyp |
Ref |
Expression |
1 |
|
cchhl.c |
⊢ 𝐶 = ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) |
2 |
|
cchhllem.1 |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
3 |
|
cchhllem.2 |
⊢ ( Scalar ‘ ndx ) ≠ ( 𝐸 ‘ ndx ) |
4 |
|
cchhllem.3 |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( 𝐸 ‘ ndx ) |
5 |
|
cchhllem.4 |
⊢ ( ·𝑖 ‘ ndx ) ≠ ( 𝐸 ‘ ndx ) |
6 |
5
|
necomi |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
7 |
2 6
|
setsnid |
⊢ ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) |
8 |
|
eqidd |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
11 |
9 10
|
sseqtri |
⊢ ℝ ⊆ ( Base ‘ ℂfld ) |
12 |
11
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℂfld ) ) |
13 |
8 12 2 3 4 5
|
sralem |
⊢ ( ⊤ → ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
14 |
13
|
mptru |
⊢ ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
15 |
1
|
fveq2i |
⊢ ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) 〉 ) ) |
16 |
7 14 15
|
3eqtr4i |
⊢ ( 𝐸 ‘ ℂfld ) = ( 𝐸 ‘ 𝐶 ) |