Metamath Proof Explorer


Theorem cdeqnot

Description: Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis cdeqnot.1 CondEq x = y φ ψ
Assertion cdeqnot CondEq x = y ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 cdeqnot.1 CondEq x = y φ ψ
2 1 cdeqri x = y φ ψ
3 2 notbid x = y ¬ φ ¬ ψ
4 3 cdeqi CondEq x = y ¬ φ ¬ ψ