Metamath Proof Explorer


Theorem cdlemd

Description: If two translations agree at any atom not under the fiducial co-atom W , then they are equal. Lemma D in Crawley p. 113. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses cdlemd.l ˙=K
cdlemd.a A=AtomsK
cdlemd.h H=LHypK
cdlemd.t T=LTrnKW
Assertion cdlemd KHLWHFTGTPA¬P˙WFP=GPF=G

Proof

Step Hyp Ref Expression
1 cdlemd.l ˙=K
2 cdlemd.a A=AtomsK
3 cdlemd.h H=LHypK
4 cdlemd.t T=LTrnKW
5 simpl11 KHLWHFTGTPA¬P˙WFP=GPqAKHLWH
6 simpl12 KHLWHFTGTPA¬P˙WFP=GPqAFT
7 simpl13 KHLWHFTGTPA¬P˙WFP=GPqAGT
8 6 7 jca KHLWHFTGTPA¬P˙WFP=GPqAFTGT
9 simpr KHLWHFTGTPA¬P˙WFP=GPqAqA
10 simpl2 KHLWHFTGTPA¬P˙WFP=GPqAPA¬P˙W
11 simpl3 KHLWHFTGTPA¬P˙WFP=GPqAFP=GP
12 eqid joinK=joinK
13 1 12 2 3 4 cdlemd9 KHLWHFTGTqAPA¬P˙WFP=GPFq=Gq
14 5 8 9 10 11 13 syl311anc KHLWHFTGTPA¬P˙WFP=GPqAFq=Gq
15 14 ralrimiva KHLWHFTGTPA¬P˙WFP=GPqAFq=Gq
16 2 3 4 ltrneq2 KHLWHFTGTqAFq=GqF=G
17 16 3ad2ant1 KHLWHFTGTPA¬P˙WFP=GPqAFq=GqF=G
18 15 17 mpbid KHLWHFTGTPA¬P˙WFP=GPF=G