Step |
Hyp |
Ref |
Expression |
1 |
|
ltrneq2.a |
|
2 |
|
ltrneq2.h |
|
3 |
|
ltrneq2.t |
|
4 |
|
simpl1 |
|
5 |
|
simpl3 |
|
6 |
|
eqid |
|
7 |
6 2 3
|
ltrn1o |
|
8 |
4 5 7
|
syl2anc |
|
9 |
|
simpl2 |
|
10 |
|
simpr3 |
|
11 |
|
eqid |
|
12 |
11 1 2 3
|
ltrncnvat |
|
13 |
4 9 10 12
|
syl3anc |
|
14 |
6 1
|
atbase |
|
15 |
13 14
|
syl |
|
16 |
|
f1ocnvfv1 |
|
17 |
8 15 16
|
syl2anc |
|
18 |
|
simpr2 |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
rspcv |
|
23 |
13 18 22
|
sylc |
|
24 |
6 2 3
|
ltrn1o |
|
25 |
4 9 24
|
syl2anc |
|
26 |
6 1
|
atbase |
|
27 |
10 26
|
syl |
|
28 |
|
f1ocnvfv2 |
|
29 |
25 27 28
|
syl2anc |
|
30 |
23 29
|
eqtr3d |
|
31 |
30
|
fveq2d |
|
32 |
17 31
|
eqtr3d |
|
33 |
32
|
breq1d |
|
34 |
|
simpr1 |
|
35 |
|
f1ocnvfv1 |
|
36 |
25 34 35
|
syl2anc |
|
37 |
36
|
breq2d |
|
38 |
|
f1ocnvfv1 |
|
39 |
8 34 38
|
syl2anc |
|
40 |
39
|
breq2d |
|
41 |
33 37 40
|
3bitr4d |
|
42 |
|
simpl1l |
|
43 |
|
eqid |
|
44 |
2 43 3
|
ltrnlaut |
|
45 |
4 9 44
|
syl2anc |
|
46 |
6 2 3
|
ltrncl |
|
47 |
4 9 34 46
|
syl3anc |
|
48 |
6 11 43
|
lautcnvle |
|
49 |
42 45 27 47 48
|
syl22anc |
|
50 |
2 43 3
|
ltrnlaut |
|
51 |
4 5 50
|
syl2anc |
|
52 |
6 2 3
|
ltrncl |
|
53 |
4 5 34 52
|
syl3anc |
|
54 |
6 11 43
|
lautcnvle |
|
55 |
42 51 27 53 54
|
syl22anc |
|
56 |
41 49 55
|
3bitr4d |
|
57 |
56
|
3exp2 |
|
58 |
57
|
imp |
|
59 |
58
|
ralrimdv |
|
60 |
|
simpl1l |
|
61 |
|
simpl1 |
|
62 |
|
simpl2 |
|
63 |
|
simpr |
|
64 |
61 62 63 46
|
syl3anc |
|
65 |
|
simpl3 |
|
66 |
61 65 63 52
|
syl3anc |
|
67 |
6 11 1
|
hlateq |
|
68 |
60 64 66 67
|
syl3anc |
|
69 |
59 68
|
sylibd |
|
70 |
69
|
ralrimdva |
|
71 |
24
|
3adant3 |
|
72 |
|
f1ofn |
|
73 |
71 72
|
syl |
|
74 |
7
|
3adant2 |
|
75 |
|
f1ofn |
|
76 |
74 75
|
syl |
|
77 |
|
eqfnfv |
|
78 |
73 76 77
|
syl2anc |
|
79 |
70 78
|
sylibrd |
|
80 |
|
fveq1 |
|
81 |
80
|
ralrimivw |
|
82 |
79 81
|
impbid1 |
|