Metamath Proof Explorer


Theorem ltrneq2

Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses ltrneq2.a A=AtomsK
ltrneq2.h H=LHypK
ltrneq2.t T=LTrnKW
Assertion ltrneq2 KHLWHFTGTpAFp=GpF=G

Proof

Step Hyp Ref Expression
1 ltrneq2.a A=AtomsK
2 ltrneq2.h H=LHypK
3 ltrneq2.t T=LTrnKW
4 simpl1 KHLWHFTGTxBaseKpAFp=GpqAKHLWH
5 simpl3 KHLWHFTGTxBaseKpAFp=GpqAGT
6 eqid BaseK=BaseK
7 6 2 3 ltrn1o KHLWHGTG:BaseK1-1 ontoBaseK
8 4 5 7 syl2anc KHLWHFTGTxBaseKpAFp=GpqAG:BaseK1-1 ontoBaseK
9 simpl2 KHLWHFTGTxBaseKpAFp=GpqAFT
10 simpr3 KHLWHFTGTxBaseKpAFp=GpqAqA
11 eqid K=K
12 11 1 2 3 ltrncnvat KHLWHFTqAF-1qA
13 4 9 10 12 syl3anc KHLWHFTGTxBaseKpAFp=GpqAF-1qA
14 6 1 atbase F-1qAF-1qBaseK
15 13 14 syl KHLWHFTGTxBaseKpAFp=GpqAF-1qBaseK
16 f1ocnvfv1 G:BaseK1-1 ontoBaseKF-1qBaseKG-1GF-1q=F-1q
17 8 15 16 syl2anc KHLWHFTGTxBaseKpAFp=GpqAG-1GF-1q=F-1q
18 simpr2 KHLWHFTGTxBaseKpAFp=GpqApAFp=Gp
19 fveq2 p=F-1qFp=FF-1q
20 fveq2 p=F-1qGp=GF-1q
21 19 20 eqeq12d p=F-1qFp=GpFF-1q=GF-1q
22 21 rspcv F-1qApAFp=GpFF-1q=GF-1q
23 13 18 22 sylc KHLWHFTGTxBaseKpAFp=GpqAFF-1q=GF-1q
24 6 2 3 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
25 4 9 24 syl2anc KHLWHFTGTxBaseKpAFp=GpqAF:BaseK1-1 ontoBaseK
26 6 1 atbase qAqBaseK
27 10 26 syl KHLWHFTGTxBaseKpAFp=GpqAqBaseK
28 f1ocnvfv2 F:BaseK1-1 ontoBaseKqBaseKFF-1q=q
29 25 27 28 syl2anc KHLWHFTGTxBaseKpAFp=GpqAFF-1q=q
30 23 29 eqtr3d KHLWHFTGTxBaseKpAFp=GpqAGF-1q=q
31 30 fveq2d KHLWHFTGTxBaseKpAFp=GpqAG-1GF-1q=G-1q
32 17 31 eqtr3d KHLWHFTGTxBaseKpAFp=GpqAF-1q=G-1q
33 32 breq1d KHLWHFTGTxBaseKpAFp=GpqAF-1qKxG-1qKx
34 simpr1 KHLWHFTGTxBaseKpAFp=GpqAxBaseK
35 f1ocnvfv1 F:BaseK1-1 ontoBaseKxBaseKF-1Fx=x
36 25 34 35 syl2anc KHLWHFTGTxBaseKpAFp=GpqAF-1Fx=x
37 36 breq2d KHLWHFTGTxBaseKpAFp=GpqAF-1qKF-1FxF-1qKx
38 f1ocnvfv1 G:BaseK1-1 ontoBaseKxBaseKG-1Gx=x
39 8 34 38 syl2anc KHLWHFTGTxBaseKpAFp=GpqAG-1Gx=x
40 39 breq2d KHLWHFTGTxBaseKpAFp=GpqAG-1qKG-1GxG-1qKx
41 33 37 40 3bitr4d KHLWHFTGTxBaseKpAFp=GpqAF-1qKF-1FxG-1qKG-1Gx
42 simpl1l KHLWHFTGTxBaseKpAFp=GpqAKHL
43 eqid LAutK=LAutK
44 2 43 3 ltrnlaut KHLWHFTFLAutK
45 4 9 44 syl2anc KHLWHFTGTxBaseKpAFp=GpqAFLAutK
46 6 2 3 ltrncl KHLWHFTxBaseKFxBaseK
47 4 9 34 46 syl3anc KHLWHFTGTxBaseKpAFp=GpqAFxBaseK
48 6 11 43 lautcnvle KHLFLAutKqBaseKFxBaseKqKFxF-1qKF-1Fx
49 42 45 27 47 48 syl22anc KHLWHFTGTxBaseKpAFp=GpqAqKFxF-1qKF-1Fx
50 2 43 3 ltrnlaut KHLWHGTGLAutK
51 4 5 50 syl2anc KHLWHFTGTxBaseKpAFp=GpqAGLAutK
52 6 2 3 ltrncl KHLWHGTxBaseKGxBaseK
53 4 5 34 52 syl3anc KHLWHFTGTxBaseKpAFp=GpqAGxBaseK
54 6 11 43 lautcnvle KHLGLAutKqBaseKGxBaseKqKGxG-1qKG-1Gx
55 42 51 27 53 54 syl22anc KHLWHFTGTxBaseKpAFp=GpqAqKGxG-1qKG-1Gx
56 41 49 55 3bitr4d KHLWHFTGTxBaseKpAFp=GpqAqKFxqKGx
57 56 3exp2 KHLWHFTGTxBaseKpAFp=GpqAqKFxqKGx
58 57 imp KHLWHFTGTxBaseKpAFp=GpqAqKFxqKGx
59 58 ralrimdv KHLWHFTGTxBaseKpAFp=GpqAqKFxqKGx
60 simpl1l KHLWHFTGTxBaseKKHL
61 simpl1 KHLWHFTGTxBaseKKHLWH
62 simpl2 KHLWHFTGTxBaseKFT
63 simpr KHLWHFTGTxBaseKxBaseK
64 61 62 63 46 syl3anc KHLWHFTGTxBaseKFxBaseK
65 simpl3 KHLWHFTGTxBaseKGT
66 61 65 63 52 syl3anc KHLWHFTGTxBaseKGxBaseK
67 6 11 1 hlateq KHLFxBaseKGxBaseKqAqKFxqKGxFx=Gx
68 60 64 66 67 syl3anc KHLWHFTGTxBaseKqAqKFxqKGxFx=Gx
69 59 68 sylibd KHLWHFTGTxBaseKpAFp=GpFx=Gx
70 69 ralrimdva KHLWHFTGTpAFp=GpxBaseKFx=Gx
71 24 3adant3 KHLWHFTGTF:BaseK1-1 ontoBaseK
72 f1ofn F:BaseK1-1 ontoBaseKFFnBaseK
73 71 72 syl KHLWHFTGTFFnBaseK
74 7 3adant2 KHLWHFTGTG:BaseK1-1 ontoBaseK
75 f1ofn G:BaseK1-1 ontoBaseKGFnBaseK
76 74 75 syl KHLWHFTGTGFnBaseK
77 eqfnfv FFnBaseKGFnBaseKF=GxBaseKFx=Gx
78 73 76 77 syl2anc KHLWHFTGTF=GxBaseKFx=Gx
79 70 78 sylibrd KHLWHFTGTpAFp=GpF=G
80 fveq1 F=GFp=Gp
81 80 ralrimivw F=GpAFp=Gp
82 79 81 impbid1 KHLWHFTGTpAFp=GpF=G