Metamath Proof Explorer


Theorem ltrneq2

Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses ltrneq2.a A = Atoms K
ltrneq2.h H = LHyp K
ltrneq2.t T = LTrn K W
Assertion ltrneq2 K HL W H F T G T p A F p = G p F = G

Proof

Step Hyp Ref Expression
1 ltrneq2.a A = Atoms K
2 ltrneq2.h H = LHyp K
3 ltrneq2.t T = LTrn K W
4 simpl1 K HL W H F T G T x Base K p A F p = G p q A K HL W H
5 simpl3 K HL W H F T G T x Base K p A F p = G p q A G T
6 eqid Base K = Base K
7 6 2 3 ltrn1o K HL W H G T G : Base K 1-1 onto Base K
8 4 5 7 syl2anc K HL W H F T G T x Base K p A F p = G p q A G : Base K 1-1 onto Base K
9 simpl2 K HL W H F T G T x Base K p A F p = G p q A F T
10 simpr3 K HL W H F T G T x Base K p A F p = G p q A q A
11 eqid K = K
12 11 1 2 3 ltrncnvat K HL W H F T q A F -1 q A
13 4 9 10 12 syl3anc K HL W H F T G T x Base K p A F p = G p q A F -1 q A
14 6 1 atbase F -1 q A F -1 q Base K
15 13 14 syl K HL W H F T G T x Base K p A F p = G p q A F -1 q Base K
16 f1ocnvfv1 G : Base K 1-1 onto Base K F -1 q Base K G -1 G F -1 q = F -1 q
17 8 15 16 syl2anc K HL W H F T G T x Base K p A F p = G p q A G -1 G F -1 q = F -1 q
18 simpr2 K HL W H F T G T x Base K p A F p = G p q A p A F p = G p
19 fveq2 p = F -1 q F p = F F -1 q
20 fveq2 p = F -1 q G p = G F -1 q
21 19 20 eqeq12d p = F -1 q F p = G p F F -1 q = G F -1 q
22 21 rspcv F -1 q A p A F p = G p F F -1 q = G F -1 q
23 13 18 22 sylc K HL W H F T G T x Base K p A F p = G p q A F F -1 q = G F -1 q
24 6 2 3 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
25 4 9 24 syl2anc K HL W H F T G T x Base K p A F p = G p q A F : Base K 1-1 onto Base K
26 6 1 atbase q A q Base K
27 10 26 syl K HL W H F T G T x Base K p A F p = G p q A q Base K
28 f1ocnvfv2 F : Base K 1-1 onto Base K q Base K F F -1 q = q
29 25 27 28 syl2anc K HL W H F T G T x Base K p A F p = G p q A F F -1 q = q
30 23 29 eqtr3d K HL W H F T G T x Base K p A F p = G p q A G F -1 q = q
31 30 fveq2d K HL W H F T G T x Base K p A F p = G p q A G -1 G F -1 q = G -1 q
32 17 31 eqtr3d K HL W H F T G T x Base K p A F p = G p q A F -1 q = G -1 q
33 32 breq1d K HL W H F T G T x Base K p A F p = G p q A F -1 q K x G -1 q K x
34 simpr1 K HL W H F T G T x Base K p A F p = G p q A x Base K
35 f1ocnvfv1 F : Base K 1-1 onto Base K x Base K F -1 F x = x
36 25 34 35 syl2anc K HL W H F T G T x Base K p A F p = G p q A F -1 F x = x
37 36 breq2d K HL W H F T G T x Base K p A F p = G p q A F -1 q K F -1 F x F -1 q K x
38 f1ocnvfv1 G : Base K 1-1 onto Base K x Base K G -1 G x = x
39 8 34 38 syl2anc K HL W H F T G T x Base K p A F p = G p q A G -1 G x = x
40 39 breq2d K HL W H F T G T x Base K p A F p = G p q A G -1 q K G -1 G x G -1 q K x
41 33 37 40 3bitr4d K HL W H F T G T x Base K p A F p = G p q A F -1 q K F -1 F x G -1 q K G -1 G x
42 simpl1l K HL W H F T G T x Base K p A F p = G p q A K HL
43 eqid LAut K = LAut K
44 2 43 3 ltrnlaut K HL W H F T F LAut K
45 4 9 44 syl2anc K HL W H F T G T x Base K p A F p = G p q A F LAut K
46 6 2 3 ltrncl K HL W H F T x Base K F x Base K
47 4 9 34 46 syl3anc K HL W H F T G T x Base K p A F p = G p q A F x Base K
48 6 11 43 lautcnvle K HL F LAut K q Base K F x Base K q K F x F -1 q K F -1 F x
49 42 45 27 47 48 syl22anc K HL W H F T G T x Base K p A F p = G p q A q K F x F -1 q K F -1 F x
50 2 43 3 ltrnlaut K HL W H G T G LAut K
51 4 5 50 syl2anc K HL W H F T G T x Base K p A F p = G p q A G LAut K
52 6 2 3 ltrncl K HL W H G T x Base K G x Base K
53 4 5 34 52 syl3anc K HL W H F T G T x Base K p A F p = G p q A G x Base K
54 6 11 43 lautcnvle K HL G LAut K q Base K G x Base K q K G x G -1 q K G -1 G x
55 42 51 27 53 54 syl22anc K HL W H F T G T x Base K p A F p = G p q A q K G x G -1 q K G -1 G x
56 41 49 55 3bitr4d K HL W H F T G T x Base K p A F p = G p q A q K F x q K G x
57 56 3exp2 K HL W H F T G T x Base K p A F p = G p q A q K F x q K G x
58 57 imp K HL W H F T G T x Base K p A F p = G p q A q K F x q K G x
59 58 ralrimdv K HL W H F T G T x Base K p A F p = G p q A q K F x q K G x
60 simpl1l K HL W H F T G T x Base K K HL
61 simpl1 K HL W H F T G T x Base K K HL W H
62 simpl2 K HL W H F T G T x Base K F T
63 simpr K HL W H F T G T x Base K x Base K
64 61 62 63 46 syl3anc K HL W H F T G T x Base K F x Base K
65 simpl3 K HL W H F T G T x Base K G T
66 61 65 63 52 syl3anc K HL W H F T G T x Base K G x Base K
67 6 11 1 hlateq K HL F x Base K G x Base K q A q K F x q K G x F x = G x
68 60 64 66 67 syl3anc K HL W H F T G T x Base K q A q K F x q K G x F x = G x
69 59 68 sylibd K HL W H F T G T x Base K p A F p = G p F x = G x
70 69 ralrimdva K HL W H F T G T p A F p = G p x Base K F x = G x
71 24 3adant3 K HL W H F T G T F : Base K 1-1 onto Base K
72 f1ofn F : Base K 1-1 onto Base K F Fn Base K
73 71 72 syl K HL W H F T G T F Fn Base K
74 7 3adant2 K HL W H F T G T G : Base K 1-1 onto Base K
75 f1ofn G : Base K 1-1 onto Base K G Fn Base K
76 74 75 syl K HL W H F T G T G Fn Base K
77 eqfnfv F Fn Base K G Fn Base K F = G x Base K F x = G x
78 73 76 77 syl2anc K HL W H F T G T F = G x Base K F x = G x
79 70 78 sylibrd K HL W H F T G T p A F p = G p F = G
80 fveq1 F = G F p = G p
81 80 ralrimivw F = G p A F p = G p
82 79 81 impbid1 K HL W H F T G T p A F p = G p F = G