Metamath Proof Explorer


Theorem cdleme17a

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. F , G , and C represent f(s), f_s(p), and s_1 respectively. We show, in their notation, f_s(p)=(p \/ q) /\ (q \/ s_1). (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme17.l ˙=K
cdleme17.j ˙=joinK
cdleme17.m ˙=meetK
cdleme17.a A=AtomsK
cdleme17.h H=LHypK
cdleme17.u U=P˙Q˙W
cdleme17.f F=S˙U˙Q˙P˙S˙W
cdleme17.g G=P˙Q˙F˙P˙S˙W
cdleme17.c C=P˙S˙W
Assertion cdleme17a KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QG=P˙Q˙Q˙C

Proof

Step Hyp Ref Expression
1 cdleme17.l ˙=K
2 cdleme17.j ˙=joinK
3 cdleme17.m ˙=meetK
4 cdleme17.a A=AtomsK
5 cdleme17.h H=LHypK
6 cdleme17.u U=P˙Q˙W
7 cdleme17.f F=S˙U˙Q˙P˙S˙W
8 cdleme17.g G=P˙Q˙F˙P˙S˙W
9 cdleme17.c C=P˙S˙W
10 1 2 3 4 5 6 7 8 9 cdleme7a G=P˙Q˙F˙C
11 1 2 3 4 5 6 7 9 cdleme9 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QF˙C=Q˙C
12 11 oveq2d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙Q˙F˙C=P˙Q˙Q˙C
13 10 12 eqtrid KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QG=P˙Q˙Q˙C