Metamath Proof Explorer


Theorem cdleme17a

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. F , G , and C represent f(s), f_s(p), and s_1 respectively. We show, in their notation, f_s(p)=(p \/ q) /\ (q \/ s_1). (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme17.l = ( le ‘ 𝐾 )
cdleme17.j = ( join ‘ 𝐾 )
cdleme17.m = ( meet ‘ 𝐾 )
cdleme17.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme17.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme17.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme17.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme17.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme17.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
Assertion cdleme17a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝐺 = ( ( 𝑃 𝑄 ) ( 𝑄 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 cdleme17.l = ( le ‘ 𝐾 )
2 cdleme17.j = ( join ‘ 𝐾 )
3 cdleme17.m = ( meet ‘ 𝐾 )
4 cdleme17.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme17.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme17.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme17.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme17.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
9 cdleme17.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
10 1 2 3 4 5 6 7 8 9 cdleme7a 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 𝐶 ) )
11 1 2 3 4 5 6 7 9 cdleme9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → ( 𝐹 𝐶 ) = ( 𝑄 𝐶 ) )
12 11 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → ( ( 𝑃 𝑄 ) ( 𝐹 𝐶 ) ) = ( ( 𝑃 𝑄 ) ( 𝑄 𝐶 ) ) )
13 10 12 syl5eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝐺 = ( ( 𝑃 𝑄 ) ( 𝑄 𝐶 ) ) )