Metamath Proof Explorer


Theorem cdleme20

Description: Combine cdleme19f and cdleme20m to eliminate -. R .<_ ( S .\/ T ) condition. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
cdleme20.n N=P˙Q˙F˙D
cdleme20.o O=P˙Q˙G˙Y
Assertion cdleme20 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TN=O

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 cdleme20.n N=P˙Q˙F˙D
13 cdleme20.o O=P˙Q˙G˙Y
14 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TKHLWHPA¬P˙WQA¬Q˙W
15 simpl22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TSA¬S˙W
16 simpl23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TTA¬T˙W
17 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TRA
18 17 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TRA
19 simpl31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TPQST
20 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬S˙P˙Q
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙T¬S˙P˙Q
22 simp322 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬T˙P˙Q
23 22 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙T¬T˙P˙Q
24 21 23 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙T¬S˙P˙Q¬T˙P˙Q
25 simp323 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙P˙Q
26 25 anim1i KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TR˙P˙QR˙S˙T
27 1 2 3 4 5 6 7 8 9 10 12 13 cdleme19f KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TN=O
28 14 15 16 18 19 24 26 27 syl133anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TR˙S˙TN=O
29 simpl11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TKHLWH
30 simpl12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TPA¬P˙W
31 simpl13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TQA¬Q˙W
32 simpl21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TRA¬R˙W
33 simpl22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TSA¬S˙W
34 simpl23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TTA¬T˙W
35 simpl31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TPQST
36 simpl32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙T¬S˙P˙Q¬T˙P˙QR˙P˙Q
37 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙T¬R˙S˙T
38 simpl33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙T¬U˙S˙T
39 37 38 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙T¬R˙S˙T¬U˙S˙T
40 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleme20m KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TN=O
41 29 30 31 32 33 34 35 36 39 40 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙T¬R˙S˙TN=O
42 28 41 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TN=O