Metamath Proof Explorer


Theorem cdleme22a

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 3rd line on p. 115. Show that t \/ v = p \/ q implies v = u. (Contributed by NM, 30-Nov-2012)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
cdleme22.u U=P˙Q˙W
Assertion cdleme22a KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV=U

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 cdleme22.u U=P˙Q˙W
7 simp1 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QKHLWH
8 simp21 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QPA¬P˙W
9 simp22 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QQA
10 simp32 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QPQ
11 simp31l KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QVA
12 simp31r KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV˙W
13 simp1l KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QKHL
14 simp23 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QTA
15 1 2 4 hlatlej2 KHLTAVAV˙T˙V
16 13 14 11 15 syl3anc KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV˙T˙V
17 simp33 KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QT˙V=P˙Q
18 16 17 breqtrd KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV˙P˙Q
19 1 2 3 4 5 6 cdleme22aa KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV=U
20 7 8 9 10 11 12 18 19 syl133anc KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV=U