Metamath Proof Explorer


Theorem cdleme31se

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme31se.e E=P˙Q˙D˙s˙T˙W
cdleme31se.y Y=P˙Q˙D˙R˙T˙W
Assertion cdleme31se RAR/sE=Y

Proof

Step Hyp Ref Expression
1 cdleme31se.e E=P˙Q˙D˙s˙T˙W
2 cdleme31se.y Y=P˙Q˙D˙R˙T˙W
3 nfcvd RA_sP˙Q˙D˙R˙T˙W
4 oveq1 s=Rs˙T=R˙T
5 4 oveq1d s=Rs˙T˙W=R˙T˙W
6 5 oveq2d s=RD˙s˙T˙W=D˙R˙T˙W
7 6 oveq2d s=RP˙Q˙D˙s˙T˙W=P˙Q˙D˙R˙T˙W
8 3 7 csbiegf RAR/sP˙Q˙D˙s˙T˙W=P˙Q˙D˙R˙T˙W
9 1 csbeq2i R/sE=R/sP˙Q˙D˙s˙T˙W
10 8 9 2 3eqtr4g RAR/sE=Y