Metamath Proof Explorer


Theorem cdleme46fvaw

Description: Show that ( FR ) is an atom not under W when R is an atom not under W . (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 vex sV
12 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
13 8 12 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
14 11 13 ax-mp s/tD=s˙U˙Q˙P˙s˙W
15 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
16 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
17 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
18 1 2 3 4 5 6 7 14 8 9 15 16 17 10 cdleme32fvaw KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W