Metamath Proof Explorer


Theorem cdleme32fvaw

Description: Show that ( FR ) is an atom not under W when R is an atom not under W . (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32fvaw KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simplr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QRA¬R˙W
16 1 5 atbase RARB
17 16 ad2antrl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WRB
18 14 cdleme31id RBP=QFR=R
19 17 18 sylan KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QFR=R
20 19 eleq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QFRARA
21 19 breq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QFR˙WR˙W
22 21 notbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=Q¬FR˙W¬R˙W
23 20 22 anbi12d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QFRA¬FR˙WRA¬R˙W
24 15 23 mpbird KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WP=QFRA¬FR˙W
25 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQKHLWHPA¬P˙WQA¬Q˙W
26 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQPQ
27 simp2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRA¬R˙W
28 1 2 3 4 5 6 7 8 9 10 11 12 cdleme32snaw KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR/sNA¬R/sN˙W
29 25 26 27 28 syl12anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/sNA¬R/sN˙W
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fva1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFR=R/sN
31 30 eleq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFRAR/sNA
32 30 breq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFR˙WR/sN˙W
33 32 notbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬FR˙W¬R/sN˙W
34 31 33 anbi12d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFRA¬FR˙WR/sNA¬R/sN˙W
35 29 34 mpbird KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFRA¬FR˙W
36 35 3expa KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFRA¬FR˙W
37 24 36 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W