Metamath Proof Explorer


Theorem cdleme32fvcl

Description: Part of proof of Lemma D in Crawley p. 113. Closure of the function F . (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WXBFXB

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 eqid ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
16 13 14 15 cdleme31fv1 XBPQ¬X˙WFX=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
17 16 adantll KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WFX=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
18 simpll1 KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WKHLWH
19 simpll2 KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WPA¬P˙W
20 simpll3 KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WQA¬Q˙W
21 simprl KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WPQ
22 simplr KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WXB
23 simprr KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙W¬X˙W
24 1 2 3 4 5 6 7 8 9 10 11 12 15 cdleme29cl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙WB
25 18 19 20 21 22 23 24 syl312anc KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙WB
26 17 25 eqeltrd KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WFXB
27 14 cdleme31fv2 XB¬PQ¬X˙WFX=X
28 simpl XB¬PQ¬X˙WXB
29 27 28 eqeltrd XB¬PQ¬X˙WFXB
30 29 adantll KHLWHPA¬P˙WQA¬Q˙WXB¬PQ¬X˙WFXB
31 26 30 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WXBFXB