Metamath Proof Explorer


Theorem cdleme32fva1

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32fva1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFR=R/sN

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRA
16 1 5 atbase RARB
17 15 16 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRB
18 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQPQ
19 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙W
20 13 14 cdleme31fv1s RBPQ¬R˙WFR=R/xO
21 17 18 19 20 syl12anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFR=R/xO
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fva KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/xO=R/sN
23 21 22 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQFR=R/sN