Metamath Proof Explorer


Theorem cdleme4gfv

Description: Part of proof of Lemma D in Crawley p. 113. TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? TODO: Would an antecedent transformer like cdleme46f2g2 help? (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef47.b B=BaseK
cdlemef47.l ˙=K
cdlemef47.j ˙=joinK
cdlemef47.m ˙=meetK
cdlemef47.a A=AtomsK
cdlemef47.h H=LHypK
cdlemef47.v V=Q˙P˙W
cdlemef47.n N=v˙V˙P˙Q˙v˙W
cdlemefs47.o O=Q˙P˙N˙u˙v˙W
cdlemef47.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
Assertion cdleme4gfv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGX=GS˙X˙W

Proof

Step Hyp Ref Expression
1 cdlemef47.b B=BaseK
2 cdlemef47.l ˙=K
3 cdlemef47.j ˙=joinK
4 cdlemef47.m ˙=meetK
5 cdlemef47.a A=AtomsK
6 cdlemef47.h H=LHypK
7 cdlemef47.v V=Q˙P˙W
8 cdlemef47.n N=v˙V˙P˙Q˙v˙W
9 cdlemefs47.o O=Q˙P˙N˙u˙v˙W
10 cdlemef47.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
11 simp11 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWH
12 simp13 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XQA¬Q˙W
13 simp12 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XPA¬P˙W
14 simp2l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XPQ
15 14 necomd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XQP
16 simp2r KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXB¬X˙W
17 simp3 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XSA¬S˙WS˙X˙W=X
18 1 2 3 4 5 6 7 8 9 10 cdleme48fv KHLWHQA¬Q˙WPA¬P˙WQPXB¬X˙WSA¬S˙WS˙X˙W=XGX=GS˙X˙W
19 11 12 13 15 16 17 18 syl321anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGX=GS˙X˙W