Metamath Proof Explorer


Theorem cdleme46f2g2

Description: Conversion for G to reuse F theorems. TODO FIX COMMENT. TODO What other conversion theorems would be reused? e.g. cdlemeg46nlpq ? Find other hlatjcom uses giving Q .\/ P . (Contributed by NM, 1-Apr-2013)

Ref Expression
Hypotheses cdleme46fg.j ˙=joinK
cdleme46fg.a A=AtomsK
Assertion cdleme46f2g2 KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙WQPSA¬S˙W¬S˙Q˙P

Proof

Step Hyp Ref Expression
1 cdleme46fg.j ˙=joinK
2 cdleme46fg.a A=AtomsK
3 simp11 KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QKHLWH
4 simp13 KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QQA¬Q˙W
5 simp12 KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QPA¬P˙W
6 3 4 5 3jca KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙W
7 simp2l KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QPQ
8 7 necomd KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QQP
9 simp2r KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QSA¬S˙W
10 8 9 jca KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QQPSA¬S˙W
11 simpl1l KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WKHL
12 simpl2l KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WPA
13 simpl3l KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WQA
14 1 2 hlatjcom KHLPAQAP˙Q=Q˙P
15 11 12 13 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WP˙Q=Q˙P
16 15 breq2d KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WS˙P˙QS˙Q˙P
17 16 notbid KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙Q¬S˙Q˙P
18 17 biimp3a KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙Q¬S˙Q˙P
19 6 10 18 3jca KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙WQPSA¬S˙W¬S˙Q˙P