Metamath Proof Explorer


Theorem cdlemefr29bpre0N

Description: TODO fix comment. (Contributed by NM, 28-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefr27.b B=BaseK
cdlemefr27.l ˙=K
cdlemefr27.j ˙=joinK
cdlemefr27.m ˙=meetK
cdlemefr27.a A=AtomsK
cdlemefr27.h H=LHypK
cdlemefr27.u U=P˙Q˙W
cdlemefr27.c C=s˙U˙Q˙P˙s˙W
cdlemefr27.n N=ifs˙P˙QIC
Assertion cdlemefr29bpre0N KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QsA¬s˙W¬s˙P˙Qs˙R˙W=Rz=N˙R˙Wz=R/sN

Proof

Step Hyp Ref Expression
1 cdlemefr27.b B=BaseK
2 cdlemefr27.l ˙=K
3 cdlemefr27.j ˙=joinK
4 cdlemefr27.m ˙=meetK
5 cdlemefr27.a A=AtomsK
6 cdlemefr27.h H=LHypK
7 cdlemefr27.u U=P˙Q˙W
8 cdlemefr27.c C=s˙U˙Q˙P˙s˙W
9 cdlemefr27.n N=ifs˙P˙QIC
10 breq1 s=Rs˙P˙QR˙P˙Q
11 10 notbid s=R¬s˙P˙Q¬R˙P˙Q
12 simp11 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QKHLWH
13 simp12l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QPA
14 simp13l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QQA
15 simp3l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QsA
16 simp3rr KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙Q¬s˙P˙Q
17 simp2 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QPQ
18 1 2 3 4 5 6 7 8 9 cdlemefr27cl KHLWHPAQAsA¬s˙P˙QPQNB
19 12 13 14 15 16 17 18 syl33anc KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QNB
20 1 2 3 4 5 6 11 19 cdlemefrs29bpre0 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QsA¬s˙W¬s˙P˙Qs˙R˙W=Rz=N˙R˙Wz=R/sN