Metamath Proof Explorer


Theorem cdlemefrs29bpre1

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b B=BaseK
cdlemefrs27.l ˙=K
cdlemefrs27.j ˙=joinK
cdlemefrs27.m ˙=meetK
cdlemefrs27.a A=AtomsK
cdlemefrs27.h H=LHypK
cdlemefrs27.eq s=Rφψ
cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
Assertion cdlemefrs29bpre1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψzBsA¬s˙Wφs˙R˙W=Rz=N˙R˙W

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B=BaseK
2 cdlemefrs27.l ˙=K
3 cdlemefrs27.j ˙=joinK
4 cdlemefrs27.m ˙=meetK
5 cdlemefrs27.a A=AtomsK
6 cdlemefrs27.h H=LHypK
7 cdlemefrs27.eq s=Rφψ
8 cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
9 cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
10 1 2 3 4 5 6 7 8 cdlemefrs29bpre0 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsA¬s˙Wφs˙R˙W=Rz=N˙R˙Wz=R/sN
11 10 rexbidv KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψzBsA¬s˙Wφs˙R˙W=Rz=N˙R˙WzBz=R/sN
12 risset R/sNBzBz=R/sN
13 11 12 bitr4di KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψzBsA¬s˙Wφs˙R˙W=Rz=N˙R˙WR/sNB
14 9 13 mpbird KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψzBsA¬s˙Wφs˙R˙W=Rz=N˙R˙W