Metamath Proof Explorer


Theorem cdlemefs29pre00N

Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 27-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefs29.b B=BaseK
cdlemefs29.l ˙=K
cdlemefs29.j ˙=joinK
cdlemefs29.m ˙=meetK
cdlemefs29.a A=AtomsK
cdlemefs29.h H=LHypK
Assertion cdlemefs29pre00N KHLWHRA¬R˙WR˙P˙QsA¬s˙Ws˙P˙Qs˙R˙W=R¬s˙Ws˙R˙W=R

Proof

Step Hyp Ref Expression
1 cdlemefs29.b B=BaseK
2 cdlemefs29.l ˙=K
3 cdlemefs29.j ˙=joinK
4 cdlemefs29.m ˙=meetK
5 cdlemefs29.a A=AtomsK
6 cdlemefs29.h H=LHypK
7 breq1 s=Rs˙P˙QR˙P˙Q
8 1 2 3 4 5 6 7 cdlemefrs29pre00 KHLWHRA¬R˙WR˙P˙QsA¬s˙Ws˙P˙Qs˙R˙W=R¬s˙Ws˙R˙W=R