Metamath Proof Explorer


Theorem cdlemefs27cl

Description: Part of proof of Lemma E in Crawley p. 113. Closure of N . TODO FIX COMMENT This is the start of a re-proof of cdleme27cl etc. with the s .<_ ( P .\/ Q ) condition (so as to not have the C hypothesis). (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs26.b B = Base K
cdlemefs26.l ˙ = K
cdlemefs26.j ˙ = join K
cdlemefs26.m ˙ = meet K
cdlemefs26.a A = Atoms K
cdlemefs26.h H = LHyp K
cdlemefs27.u U = P ˙ Q ˙ W
cdlemefs27.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs27.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemefs27.i I = ι u B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q u = E
cdlemefs27.n N = if s ˙ P ˙ Q I C
Assertion cdlemefs27cl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q N B

Proof

Step Hyp Ref Expression
1 cdlemefs26.b B = Base K
2 cdlemefs26.l ˙ = K
3 cdlemefs26.j ˙ = join K
4 cdlemefs26.m ˙ = meet K
5 cdlemefs26.a A = Atoms K
6 cdlemefs26.h H = LHyp K
7 cdlemefs27.u U = P ˙ Q ˙ W
8 cdlemefs27.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs27.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemefs27.i I = ι u B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q u = E
11 cdlemefs27.n N = if s ˙ P ˙ Q I C
12 simpr2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q s ˙ P ˙ Q
13 12 iftrued K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q if s ˙ P ˙ Q I C = I
14 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q K HL W H
15 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q P A ¬ P ˙ W
16 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q Q A ¬ Q ˙ W
17 simpr1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q s A ¬ s ˙ W
18 simpr3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q P Q
19 1 2 3 4 5 6 7 8 9 10 cdleme25cl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q I B
20 14 15 16 17 18 12 19 syl312anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q I B
21 13 20 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q if s ˙ P ˙ Q I C B
22 11 21 eqeltrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W s ˙ P ˙ Q P Q N B