Metamath Proof Explorer


Theorem cdlemefs27cl

Description: Part of proof of Lemma E in Crawley p. 113. Closure of N . TODO FIX COMMENT This is the start of a re-proof of cdleme27cl etc. with the s .<_ ( P .\/ Q ) condition (so as to not have the C hypothesis). (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs26.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefs26.l = ( le ‘ 𝐾 )
cdlemefs26.j = ( join ‘ 𝐾 )
cdlemefs26.m = ( meet ‘ 𝐾 )
cdlemefs26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefs26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemefs27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemefs27.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs27.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemefs27.i 𝐼 = ( 𝑢𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑢 = 𝐸 ) )
cdlemefs27.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
Assertion cdlemefs27cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → 𝑁𝐵 )

Proof

Step Hyp Ref Expression
1 cdlemefs26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefs26.l = ( le ‘ 𝐾 )
3 cdlemefs26.j = ( join ‘ 𝐾 )
4 cdlemefs26.m = ( meet ‘ 𝐾 )
5 cdlemefs26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefs26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemefs27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemefs27.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs27.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemefs27.i 𝐼 = ( 𝑢𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑢 = 𝐸 ) )
11 cdlemefs27.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
12 simpr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → 𝑠 ( 𝑃 𝑄 ) )
13 12 iftrued ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 ) = 𝐼 )
14 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
16 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
17 simpr1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
18 simpr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → 𝑃𝑄 )
19 1 2 3 4 5 6 7 8 9 10 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑃𝑄𝑠 ( 𝑃 𝑄 ) ) ) → 𝐼𝐵 )
20 14 15 16 17 18 12 19 syl312anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → 𝐼𝐵 )
21 13 20 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 ) ∈ 𝐵 )
22 11 21 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) → 𝑁𝐵 )