Metamath Proof Explorer


Theorem cdleme27cl

Description: Part of proof of Lemma E in Crawley p. 113. Closure of C . (Contributed by NM, 6-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme27.u U=P˙Q˙W
cdleme27.f F=s˙U˙Q˙P˙s˙W
cdleme27.z Z=z˙U˙Q˙P˙z˙W
cdleme27.n N=P˙Q˙Z˙s˙z˙W
cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
cdleme27.c C=ifs˙P˙QDF
Assertion cdleme27cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQCB

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme27.u U=P˙Q˙W
8 cdleme27.f F=s˙U˙Q˙P˙s˙W
9 cdleme27.z Z=z˙U˙Q˙P˙z˙W
10 cdleme27.n N=P˙Q˙Z˙s˙z˙W
11 cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
12 cdleme27.c C=ifs˙P˙QDF
13 simpl1 KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QKHLWH
14 simpl2l KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QPA¬P˙W
15 simpl2r KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QQA¬Q˙W
16 simpl3l KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QsA¬s˙W
17 simpl3r KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QPQ
18 simpr KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙Qs˙P˙Q
19 1 2 3 4 5 6 7 9 10 11 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QDB
20 13 14 15 16 17 18 19 syl312anc KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQs˙P˙QDB
21 simp1l KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQKHL
22 simp1r KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQWH
23 simp2ll KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQPA
24 simp2rl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQQA
25 simp3ll KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQsA
26 2 3 4 5 6 7 8 1 cdleme1b KHLWHPAQAsAFB
27 21 22 23 24 25 26 syl23anc KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQFB
28 27 adantr KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQ¬s˙P˙QFB
29 20 28 ifclda KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQifs˙P˙QDFB
30 12 29 eqeltrid KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQCB