Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
13 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
15 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
16 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> ( s e. A /\ -. s .<_ W ) ) |
17 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> P =/= Q ) |
18 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> s .<_ ( P .\/ Q ) ) |
19 |
1 2 3 4 5 6 7 9 10 11
|
cdleme25cl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) /\ ( P =/= Q /\ s .<_ ( P .\/ Q ) ) ) -> D e. B ) |
20 |
13 14 15 16 17 18 19
|
syl312anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ s .<_ ( P .\/ Q ) ) -> D e. B ) |
21 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> K e. HL ) |
22 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> W e. H ) |
23 |
|
simp2ll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> P e. A ) |
24 |
|
simp2rl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> Q e. A ) |
25 |
|
simp3ll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> s e. A ) |
26 |
2 3 4 5 6 7 8 1
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ s e. A ) ) -> F e. B ) |
27 |
21 22 23 24 25 26
|
syl23anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> F e. B ) |
28 |
27
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) /\ -. s .<_ ( P .\/ Q ) ) -> F e. B ) |
29 |
20 28
|
ifclda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> if ( s .<_ ( P .\/ Q ) , D , F ) e. B ) |
30 |
12 29
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> C e. B ) |