Metamath Proof Explorer


Theorem cdlemg1b2

Description: This theorem can be used to shorten G = hypothesis. TODO: Fix comment. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1.b B=BaseK
cdlemg1.l ˙=K
cdlemg1.j ˙=joinK
cdlemg1.m ˙=meetK
cdlemg1.a A=AtomsK
cdlemg1.h H=LHypK
cdlemg1.u U=P˙Q˙W
cdlemg1.d D=t˙U˙Q˙P˙t˙W
cdlemg1.e E=P˙Q˙D˙s˙t˙W
cdlemg1.g G=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemg1.t T=LTrnKW
cdlemg1.f F=ιfT|fP=Q
Assertion cdlemg1b2 KHLWHPA¬P˙WQA¬Q˙WF=G

Proof

Step Hyp Ref Expression
1 cdlemg1.b B=BaseK
2 cdlemg1.l ˙=K
3 cdlemg1.j ˙=joinK
4 cdlemg1.m ˙=meetK
5 cdlemg1.a A=AtomsK
6 cdlemg1.h H=LHypK
7 cdlemg1.u U=P˙Q˙W
8 cdlemg1.d D=t˙U˙Q˙P˙t˙W
9 cdlemg1.e E=P˙Q˙D˙s˙t˙W
10 cdlemg1.g G=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemg1.t T=LTrnKW
12 cdlemg1.f F=ιfT|fP=Q
13 eqid xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
14 1 2 3 4 5 6 7 8 9 13 11 cdlemg1a KHLWHPA¬P˙WQA¬Q˙WxBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx=ιfT|fP=Q
15 12 14 eqtr4id KHLWHPA¬P˙WQA¬Q˙WF=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
16 15 10 eqtr4di KHLWHPA¬P˙WQA¬Q˙WF=G