Metamath Proof Explorer
Description: This theorem can be used to shorten G = hypothesis. TODO: Fix
comment. (Contributed by NM, 18-Apr-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cdlemg1.b |
|
|
|
cdlemg1.l |
|
|
|
cdlemg1.j |
|
|
|
cdlemg1.m |
|
|
|
cdlemg1.a |
|
|
|
cdlemg1.h |
|
|
|
cdlemg1.u |
|
|
|
cdlemg1.d |
|
|
|
cdlemg1.e |
|
|
|
cdlemg1.g |
|
|
|
cdlemg1.t |
|
|
|
cdlemg1.f |
|
|
Assertion |
cdlemg1b2 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg1.b |
|
2 |
|
cdlemg1.l |
|
3 |
|
cdlemg1.j |
|
4 |
|
cdlemg1.m |
|
5 |
|
cdlemg1.a |
|
6 |
|
cdlemg1.h |
|
7 |
|
cdlemg1.u |
|
8 |
|
cdlemg1.d |
|
9 |
|
cdlemg1.e |
|
10 |
|
cdlemg1.g |
|
11 |
|
cdlemg1.t |
|
12 |
|
cdlemg1.f |
|
13 |
|
eqid |
|
14 |
1 2 3 4 5 6 7 8 9 13 11
|
cdlemg1a |
|
15 |
12 14
|
eqtr4id |
|
16 |
15 10
|
eqtr4di |
|