Metamath Proof Explorer


Theorem cdlemg1a

Description: Shorter expression for G . TODO: fix comment. TODO: shorten using cdleme or vice-versa? Also, if not shortened with cdleme , then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013)

Ref Expression
Hypotheses cdlemg1.b B=BaseK
cdlemg1.l ˙=K
cdlemg1.j ˙=joinK
cdlemg1.m ˙=meetK
cdlemg1.a A=AtomsK
cdlemg1.h H=LHypK
cdlemg1.u U=P˙Q˙W
cdlemg1.d D=t˙U˙Q˙P˙t˙W
cdlemg1.e E=P˙Q˙D˙s˙t˙W
cdlemg1.g G=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemg1.t T=LTrnKW
Assertion cdlemg1a KHLWHPA¬P˙WQA¬Q˙WG=ιfT|fP=Q

Proof

Step Hyp Ref Expression
1 cdlemg1.b B=BaseK
2 cdlemg1.l ˙=K
3 cdlemg1.j ˙=joinK
4 cdlemg1.m ˙=meetK
5 cdlemg1.a A=AtomsK
6 cdlemg1.h H=LHypK
7 cdlemg1.u U=P˙Q˙W
8 cdlemg1.d D=t˙U˙Q˙P˙t˙W
9 cdlemg1.e E=P˙Q˙D˙s˙t˙W
10 cdlemg1.g G=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemg1.t T=LTrnKW
12 1 2 3 4 5 6 7 8 9 10 11 cdleme50ltrn KHLWHPA¬P˙WQA¬Q˙WGT
13 simpll1 KHLWHPA¬P˙WQA¬Q˙WfTfP=QKHLWH
14 simplr KHLWHPA¬P˙WQA¬Q˙WfTfP=QfT
15 12 ad2antrr KHLWHPA¬P˙WQA¬Q˙WfTfP=QGT
16 simpll2 KHLWHPA¬P˙WQA¬Q˙WfTfP=QPA¬P˙W
17 simpr KHLWHPA¬P˙WQA¬Q˙WfTfP=QfP=Q
18 1 2 3 4 5 6 7 8 9 10 cdleme17d KHLWHPA¬P˙WQA¬Q˙WGP=Q
19 18 ad2antrr KHLWHPA¬P˙WQA¬Q˙WfTfP=QGP=Q
20 17 19 eqtr4d KHLWHPA¬P˙WQA¬Q˙WfTfP=QfP=GP
21 2 5 6 11 cdlemd KHLWHfTGTPA¬P˙WfP=GPf=G
22 13 14 15 16 20 21 syl311anc KHLWHPA¬P˙WQA¬Q˙WfTfP=Qf=G
23 22 ex KHLWHPA¬P˙WQA¬Q˙WfTfP=Qf=G
24 18 adantr KHLWHPA¬P˙WQA¬Q˙WfTGP=Q
25 fveq1 f=GfP=GP
26 25 eqeq1d f=GfP=QGP=Q
27 24 26 syl5ibrcom KHLWHPA¬P˙WQA¬Q˙WfTf=GfP=Q
28 23 27 impbid KHLWHPA¬P˙WQA¬Q˙WfTfP=Qf=G
29 12 28 riota5 KHLWHPA¬P˙WQA¬Q˙WιfT|fP=Q=G
30 29 eqcomd KHLWHPA¬P˙WQA¬Q˙WG=ιfT|fP=Q