Metamath Proof Explorer


Theorem cdlemg36

Description: Use cdlemg35 to eliminate v from cdlemg34 . TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙=K
cdlemg35.j ˙=joinK
cdlemg35.m ˙=meetK
cdlemg35.a A=AtomsK
cdlemg35.h H=LHypK
cdlemg35.t T=LTrnKW
cdlemg35.r R=trLKW
Assertion cdlemg36 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙=K
2 cdlemg35.j ˙=joinK
3 cdlemg35.m ˙=meetK
4 cdlemg35.a A=AtomsK
5 cdlemg35.h H=LHypK
6 cdlemg35.t T=LTrnKW
7 cdlemg35.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rKHLWH
9 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rPA¬P˙W
10 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rFT
11 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rGT
12 simp31l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rFPP
13 simp31r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rGPP
14 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rRFRG
15 1 2 3 4 5 6 7 cdlemg35 KHLWHPA¬P˙WFTGTFPPGPPRFRGvAv˙WvRFvRG
16 8 9 10 11 12 13 14 15 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRG
17 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGKHLWHPA¬P˙WQA¬Q˙W
18 simp2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGvA
19 simp3l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGv˙W
20 18 19 jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGvAv˙W
21 simp121 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGFT
22 simp122 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGGT
23 21 22 jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGFTGT
24 simp123 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGPQ
25 simp3rl KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGvRF
26 simp3rr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGvRG
27 simp133 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGrA¬r˙WP˙r=Q˙r
28 eqid P˙v˙Q˙RF=P˙v˙Q˙RF
29 eqid P˙v˙Q˙RG=P˙v˙Q˙RG
30 1 2 3 4 5 6 7 28 29 cdlemg34 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
31 17 20 23 24 25 26 27 30 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGP˙FGP˙W=Q˙FGQ˙W
32 31 rexlimdv3a KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rvAv˙WvRFvRGP˙FGP˙W=Q˙FGQ˙W
33 16 32 mpd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGrA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W