Description: Use cdlemg35 to eliminate v from cdlemg34 . TODO: Fix comment. (Contributed by NM, 31-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg35.l | |
|
cdlemg35.j | |
||
cdlemg35.m | |
||
cdlemg35.a | |
||
cdlemg35.h | |
||
cdlemg35.t | |
||
cdlemg35.r | |
||
Assertion | cdlemg36 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg35.l | |
|
2 | cdlemg35.j | |
|
3 | cdlemg35.m | |
|
4 | cdlemg35.a | |
|
5 | cdlemg35.h | |
|
6 | cdlemg35.t | |
|
7 | cdlemg35.r | |
|
8 | simp11 | |
|
9 | simp12 | |
|
10 | simp21 | |
|
11 | simp22 | |
|
12 | simp31l | |
|
13 | simp31r | |
|
14 | simp32 | |
|
15 | 1 2 3 4 5 6 7 | cdlemg35 | |
16 | 8 9 10 11 12 13 14 15 | syl133anc | |
17 | simp11 | |
|
18 | simp2 | |
|
19 | simp3l | |
|
20 | 18 19 | jca | |
21 | simp121 | |
|
22 | simp122 | |
|
23 | 21 22 | jca | |
24 | simp123 | |
|
25 | simp3rl | |
|
26 | simp3rr | |
|
27 | simp133 | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 1 2 3 4 5 6 7 28 29 | cdlemg34 | |
31 | 17 20 23 24 25 26 27 30 | syl133anc | |
32 | 31 | rexlimdv3a | |
33 | 16 32 | mpd | |