Metamath Proof Explorer


Theorem cdlemg35

Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr to avoid the =/= conditions? (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙ = K
cdlemg35.j ˙ = join K
cdlemg35.m ˙ = meet K
cdlemg35.a A = Atoms K
cdlemg35.h H = LHyp K
cdlemg35.t T = LTrn K W
cdlemg35.r R = trL K W
Assertion cdlemg35 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v ˙ W v R F v R G

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙ = K
2 cdlemg35.j ˙ = join K
3 cdlemg35.m ˙ = meet K
4 cdlemg35.a A = Atoms K
5 cdlemg35.h H = LHyp K
6 cdlemg35.t T = LTrn K W
7 cdlemg35.r R = trL K W
8 simp1l K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G K HL
9 simp1 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G K HL W H
10 simp21 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G P A ¬ P ˙ W
11 simp22 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G F T
12 simp31 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G F P P
13 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
14 9 10 11 12 13 syl112anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G R F A
15 simp23 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G G T
16 simp32 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G G P P
17 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W G T G P P R G A
18 9 10 15 16 17 syl112anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G R G A
19 simp33 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G R F R G
20 1 2 4 hlsupr K HL R F A R G A R F R G v A v R F v R G v ˙ R F ˙ R G
21 8 14 18 19 20 syl31anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G
22 eqid Base K = Base K
23 simp11l K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G K HL
24 23 hllatd K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G K Lat
25 22 4 atbase v A v Base K
26 25 3ad2ant2 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v Base K
27 simp11 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G K HL W H
28 simp122 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G F T
29 22 5 6 7 trlcl K HL W H F T R F Base K
30 27 28 29 syl2anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R F Base K
31 simp123 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G G T
32 22 5 6 7 trlcl K HL W H G T R G Base K
33 27 31 32 syl2anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R G Base K
34 22 2 latjcl K Lat R F Base K R G Base K R F ˙ R G Base K
35 24 30 33 34 syl3anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R F ˙ R G Base K
36 simp11r K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G W H
37 22 5 lhpbase W H W Base K
38 36 37 syl K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G W Base K
39 simp33 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v ˙ R F ˙ R G
40 1 5 6 7 trlle K HL W H F T R F ˙ W
41 27 28 40 syl2anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R F ˙ W
42 1 5 6 7 trlle K HL W H G T R G ˙ W
43 27 31 42 syl2anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R G ˙ W
44 22 1 2 latjle12 K Lat R F Base K R G Base K W Base K R F ˙ W R G ˙ W R F ˙ R G ˙ W
45 24 30 33 38 44 syl13anc K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R F ˙ W R G ˙ W R F ˙ R G ˙ W
46 41 43 45 mpbi2and K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G R F ˙ R G ˙ W
47 22 1 24 26 35 38 39 46 lattrd K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v ˙ W
48 simp31 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v R F
49 simp32 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v R G
50 47 48 49 jca32 K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v ˙ W v R F v R G
51 50 3expia K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v ˙ W v R F v R G
52 51 reximdva K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v R F v R G v ˙ R F ˙ R G v A v ˙ W v R F v R G
53 21 52 mpd K HL W H P A ¬ P ˙ W F T G T F P P G P P R F R G v A v ˙ W v R F v R G