| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg35.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg35.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg35.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg35.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg35.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg35.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg35.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. HL ) | 
						
							| 9 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | simp21 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 11 |  | simp22 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) | 
						
							| 12 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` P ) =/= P ) | 
						
							| 13 | 1 4 5 6 7 | trlat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 14 | 9 10 11 12 13 | syl112anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) e. A ) | 
						
							| 15 |  | simp23 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) | 
						
							| 16 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G ` P ) =/= P ) | 
						
							| 17 | 1 4 5 6 7 | trlat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( G e. T /\ ( G ` P ) =/= P ) ) -> ( R ` G ) e. A ) | 
						
							| 18 | 9 10 15 16 17 | syl112anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) e. A ) | 
						
							| 19 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) =/= ( R ` G ) ) | 
						
							| 20 | 1 2 4 | hlsupr |  |-  ( ( ( K e. HL /\ ( R ` F ) e. A /\ ( R ` G ) e. A ) /\ ( R ` F ) =/= ( R ` G ) ) -> E. v e. A ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) | 
						
							| 21 | 8 14 18 19 20 | syl31anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> E. v e. A ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 23 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> K e. HL ) | 
						
							| 24 | 23 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> K e. Lat ) | 
						
							| 25 | 22 4 | atbase |  |-  ( v e. A -> v e. ( Base ` K ) ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> v e. ( Base ` K ) ) | 
						
							| 27 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 28 |  | simp122 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> F e. T ) | 
						
							| 29 | 22 5 6 7 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 30 | 27 28 29 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 31 |  | simp123 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> G e. T ) | 
						
							| 32 | 22 5 6 7 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. ( Base ` K ) ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( R ` G ) e. ( Base ` K ) ) | 
						
							| 34 | 22 2 | latjcl |  |-  ( ( K e. Lat /\ ( R ` F ) e. ( Base ` K ) /\ ( R ` G ) e. ( Base ` K ) ) -> ( ( R ` F ) .\/ ( R ` G ) ) e. ( Base ` K ) ) | 
						
							| 35 | 24 30 33 34 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( ( R ` F ) .\/ ( R ` G ) ) e. ( Base ` K ) ) | 
						
							| 36 |  | simp11r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> W e. H ) | 
						
							| 37 | 22 5 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> W e. ( Base ` K ) ) | 
						
							| 39 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) | 
						
							| 40 | 1 5 6 7 | trlle |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) | 
						
							| 41 | 27 28 40 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( R ` F ) .<_ W ) | 
						
							| 42 | 1 5 6 7 | trlle |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W ) | 
						
							| 43 | 27 31 42 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( R ` G ) .<_ W ) | 
						
							| 44 | 22 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( ( R ` F ) e. ( Base ` K ) /\ ( R ` G ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( R ` F ) .<_ W /\ ( R ` G ) .<_ W ) <-> ( ( R ` F ) .\/ ( R ` G ) ) .<_ W ) ) | 
						
							| 45 | 24 30 33 38 44 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( ( ( R ` F ) .<_ W /\ ( R ` G ) .<_ W ) <-> ( ( R ` F ) .\/ ( R ` G ) ) .<_ W ) ) | 
						
							| 46 | 41 43 45 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( ( R ` F ) .\/ ( R ` G ) ) .<_ W ) | 
						
							| 47 | 22 1 24 26 35 38 39 46 | lattrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> v .<_ W ) | 
						
							| 48 |  | simp31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> v =/= ( R ` F ) ) | 
						
							| 49 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> v =/= ( R ` G ) ) | 
						
							| 50 | 47 48 49 | jca32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) ) -> ( v .<_ W /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) ) | 
						
							| 51 | 50 | 3expia |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ v e. A ) -> ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) -> ( v .<_ W /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) ) ) | 
						
							| 52 | 51 | reximdva |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( E. v e. A ( v =/= ( R ` F ) /\ v =/= ( R ` G ) /\ v .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) -> E. v e. A ( v .<_ W /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) ) ) | 
						
							| 53 | 21 52 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> E. v e. A ( v .<_ W /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) ) |