Metamath Proof Explorer


Theorem cdlemg34

Description: Use cdlemg33 to eliminate z from cdlemg29 . TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg34 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 1 2 3 4 5 6 7 8 9 cdlemg33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v
11 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
12 simp121 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v v A v ˙ W
13 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z A
14 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v ¬ z ˙ W
15 13 14 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z A ¬ z ˙ W
16 simp122 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v F T G T
17 simp3r1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z N
18 simp3r2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z O
19 17 18 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z N z O
20 simp3r3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v z ˙ P ˙ v
21 simp131 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v v R F
22 simp132 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v v R G
23 21 22 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v v R F v R G
24 1 2 3 4 5 6 7 8 9 cdlemg29 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
25 11 12 15 16 19 20 23 24 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
26 25 rexlimdv3a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
27 10 26 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W