Metamath Proof Explorer


Theorem cdlemg33

Description: Combine cdlemg33b , cdlemg33c , cdlemg33d , cdlemg33e . TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rKHLWH
11 simp12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rPA¬P˙W
12 simp13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rQA¬Q˙W
13 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rvAv˙W
14 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rFT
15 simp31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rvRF
16 1 2 3 4 5 6 7 8 cdlemg31b0a KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAN=0.K
17 10 11 12 13 14 15 16 syl132anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAN=0.K
18 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rGT
19 simp32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rvRG
20 1 2 3 4 5 6 7 9 cdlemg31b0a KHLWHPA¬P˙WQA¬Q˙WvAv˙WGTvRGOAO=0.K
21 10 11 12 13 18 19 20 syl132anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rOAO=0.K
22 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAKHLWHPA¬P˙WQA¬Q˙W
23 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAvAv˙W
24 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOANAOA
25 simpl22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAFTGT
26 simpl23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAPQ
27 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAvRF
28 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOArA¬r˙WP˙r=Q˙r
29 1 2 3 4 5 6 7 8 9 cdlemg33b KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v
30 22 23 24 25 26 27 28 29 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAzA¬z˙WzNzOz˙P˙v
31 30 ex KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAOAzA¬z˙WzNzOz˙P˙v
32 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAKHLWHPA¬P˙WQA¬Q˙W
33 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAvAv˙W
34 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAN=0.KOA
35 simpl22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAFTGT
36 simpl23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAPQ
37 simpl32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAvRG
38 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOArA¬r˙WP˙r=Q˙r
39 1 2 3 4 5 6 7 8 9 cdlemg33d KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KOAFTGTPQvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v
40 32 33 34 35 36 37 38 39 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAzA¬z˙WzNzOz˙P˙v
41 40 ex KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KOAzA¬z˙WzNzOz˙P˙v
42 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KKHLWHPA¬P˙WQA¬Q˙W
43 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KvAv˙W
44 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KNAO=0.K
45 simpl22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KFTGT
46 simpl23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KPQ
47 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KvRF
48 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KrA¬r˙WP˙r=Q˙r
49 1 2 3 4 5 6 7 8 9 cdlemg33c KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v
50 42 43 44 45 46 47 48 49 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KzA¬z˙WzNzOz˙P˙v
51 50 ex KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAO=0.KzA¬z˙WzNzOz˙P˙v
52 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KKHLWHPA¬P˙WQA¬Q˙W
53 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KvAv˙W
54 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KN=0.KO=0.K
55 simpl22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KFTGT
56 simpl23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KPQ
57 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KvRF
58 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KrA¬r˙WP˙r=Q˙r
59 1 2 3 4 5 6 7 8 9 cdlemg33e KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v
60 52 53 54 55 56 57 58 59 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KzA¬z˙WzNzOz˙P˙v
61 60 ex KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rN=0.KO=0.KzA¬z˙WzNzOz˙P˙v
62 31 41 51 61 ccased KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rNAN=0.KOAO=0.KzA¬z˙WzNzOz˙P˙v
63 17 21 62 mp2and KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTGTPQvRFvRGrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v