Metamath Proof Explorer


Theorem cdlemg33

Description: Combine cdlemg33b , cdlemg33c , cdlemg33d , cdlemg33e . TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
11 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
12 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
13 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r v A v ˙ W
14 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r F T
15 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r v R F
16 1 2 3 4 5 6 7 8 cdlemg31b0a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F N A N = 0. K
17 10 11 12 13 14 15 16 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A N = 0. K
18 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r G T
19 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r v R G
20 1 2 3 4 5 6 7 9 cdlemg31b0a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W G T v R G O A O = 0. K
21 10 11 12 13 18 19 20 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r O A O = 0. K
22 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
23 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A v A v ˙ W
24 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A N A O A
25 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A F T G T
26 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A P Q
27 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A v R F
28 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A r A ¬ r ˙ W P ˙ r = Q ˙ r
29 1 2 3 4 5 6 7 8 9 cdlemg33b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N A O A F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v
30 22 23 24 25 26 27 28 29 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A z A ¬ z ˙ W z N z O z ˙ P ˙ v
31 30 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O A z A ¬ z ˙ W z N z O z ˙ P ˙ v
32 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
33 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A v A v ˙ W
34 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A N = 0. K O A
35 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A F T G T
36 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A P Q
37 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A v R G
38 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A r A ¬ r ˙ W P ˙ r = Q ˙ r
39 1 2 3 4 5 6 7 8 9 cdlemg33d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O A F T G T P Q v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v
40 32 33 34 35 36 37 38 39 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A z A ¬ z ˙ W z N z O z ˙ P ˙ v
41 40 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O A z A ¬ z ˙ W z N z O z ˙ P ˙ v
42 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
43 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K v A v ˙ W
44 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K N A O = 0. K
45 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K F T G T
46 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K P Q
47 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K v R F
48 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r
49 1 2 3 4 5 6 7 8 9 cdlemg33c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N A O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v
50 42 43 44 45 46 47 48 49 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K z A ¬ z ˙ W z N z O z ˙ P ˙ v
51 50 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A O = 0. K z A ¬ z ˙ W z N z O z ˙ P ˙ v
52 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
53 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K v A v ˙ W
54 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K N = 0. K O = 0. K
55 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K F T G T
56 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K P Q
57 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K v R F
58 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r
59 1 2 3 4 5 6 7 8 9 cdlemg33e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W N = 0. K O = 0. K F T G T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v
60 52 53 54 55 56 57 58 59 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K z A ¬ z ˙ W z N z O z ˙ P ˙ v
61 60 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N = 0. K O = 0. K z A ¬ z ˙ W z N z O z ˙ P ˙ v
62 31 41 51 61 ccased K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r N A N = 0. K O A O = 0. K z A ¬ z ˙ W z N z O z ˙ P ˙ v
63 17 21 62 mp2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T G T P Q v R F v R G r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z N z O z ˙ P ˙ v