Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
cdlemg33.o |
|
10 |
|
simp1 |
|
11 |
|
simp21 |
|
12 |
|
simp22l |
|
13 |
|
simp23l |
|
14 |
|
simp3 |
|
15 |
1 2 3 4 5 6 7 8
|
cdlemg33b0 |
|
16 |
10 11 12 13 14 15
|
syl131anc |
|
17 |
|
simp11l |
|
18 |
17
|
adantr |
|
19 |
|
hlatl |
|
20 |
18 19
|
syl |
|
21 |
|
eqid |
|
22 |
21 4
|
atn0 |
|
23 |
20 22
|
sylancom |
|
24 |
|
simp22r |
|
25 |
24
|
adantr |
|
26 |
23 25
|
neeqtrrd |
|
27 |
26
|
biantrud |
|
28 |
27
|
anbi1d |
|
29 |
|
df-3an |
|
30 |
28 29
|
bitr4di |
|
31 |
30
|
anbi2d |
|
32 |
31
|
rexbidva |
|
33 |
16 32
|
mpbid |
|