| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | cdlemg31.n |  | 
						
							| 9 |  | cdlemg33.o |  | 
						
							| 10 |  | simp1 |  | 
						
							| 11 |  | simp21 |  | 
						
							| 12 |  | simp22l |  | 
						
							| 13 |  | simp23l |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 | 1 2 3 4 5 6 7 8 | cdlemg33b0 |  | 
						
							| 16 | 10 11 12 13 14 15 | syl131anc |  | 
						
							| 17 |  | simp11l |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 |  | hlatl |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 4 | atn0 |  | 
						
							| 23 | 20 22 | sylancom |  | 
						
							| 24 |  | simp22r |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 23 25 | neeqtrrd |  | 
						
							| 27 | 26 | biantrud |  | 
						
							| 28 | 27 | anbi1d |  | 
						
							| 29 |  | df-3an |  | 
						
							| 30 | 28 29 | bitr4di |  | 
						
							| 31 | 30 | anbi2d |  | 
						
							| 32 | 31 | rexbidva |  | 
						
							| 33 | 16 32 | mpbid |  |