Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp11 |
|
10 |
|
simp12 |
|
11 |
|
simp13 |
|
12 |
|
simp22 |
|
13 |
|
simp21l |
|
14 |
|
simp21r |
|
15 |
13 14
|
jca |
|
16 |
|
simp23 |
|
17 |
|
simp32 |
|
18 |
1 2 3 4 5 6 7 8
|
cdlemg31d |
|
19 |
9 10 11 15 16 17 12 18
|
syl133anc |
|
20 |
12 19
|
jca |
|
21 |
|
simp31 |
|
22 |
|
nbrne2 |
|
23 |
22
|
necomd |
|
24 |
14 19 23
|
syl2anc |
|
25 |
13 24
|
jca |
|
26 |
|
simp33 |
|
27 |
1 2 4 5
|
4atex3 |
|
28 |
9 10 11 20 21 25 26 27
|
syl133anc |
|
29 |
|
df-3an |
|
30 |
|
simpl |
|
31 |
30
|
a1i |
|
32 |
|
simp12l |
|
33 |
|
simp13l |
|
34 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|
35 |
9 32 33 13 16 34
|
syl122anc |
|
36 |
|
simp11l |
|
37 |
1 2 4
|
hlatlej2 |
|
38 |
36 32 13 37
|
syl3anc |
|
39 |
36
|
hllatd |
|
40 |
|
eqid |
|
41 |
40 4
|
atbase |
|
42 |
12 41
|
syl |
|
43 |
40 4
|
atbase |
|
44 |
13 43
|
syl |
|
45 |
40 2 4
|
hlatjcl |
|
46 |
36 32 13 45
|
syl3anc |
|
47 |
40 1 2
|
latjle12 |
|
48 |
39 42 44 46 47
|
syl13anc |
|
49 |
35 38 48
|
mpbi2and |
|
50 |
49
|
adantr |
|
51 |
39
|
adantr |
|
52 |
40 4
|
atbase |
|
53 |
52
|
adantl |
|
54 |
40 2 4
|
hlatjcl |
|
55 |
36 12 13 54
|
syl3anc |
|
56 |
55
|
adantr |
|
57 |
46
|
adantr |
|
58 |
40 1
|
lattr |
|
59 |
51 53 56 57 58
|
syl13anc |
|
60 |
50 59
|
mpan2d |
|
61 |
31 60
|
anim12d |
|
62 |
29 61
|
syl5bi |
|
63 |
62
|
anim2d |
|
64 |
63
|
reximdva |
|
65 |
28 64
|
mpd |
|