Metamath Proof Explorer


Theorem cdlemg33c0

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
Assertion cdlemg33c0 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
10 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r W H
11 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
12 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
13 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
14 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r v A
15 simp2lr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r v ˙ W
16 simp12r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ P ˙ W
17 nbrne2 v ˙ W ¬ P ˙ W v P
18 17 necomd v ˙ W ¬ P ˙ W P v
19 15 16 18 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r P v
20 14 19 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r v A P v
21 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W P ˙ r = Q ˙ r
22 1 2 4 5 4atex3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P A ¬ P ˙ W P Q v A P v r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z P z v z ˙ P ˙ v
23 9 10 11 12 11 13 20 21 22 syl233anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z P z v z ˙ P ˙ v
24 simp3 z P z v z ˙ P ˙ v z ˙ P ˙ v
25 24 anim2i ¬ z ˙ W z P z v z ˙ P ˙ v ¬ z ˙ W z ˙ P ˙ v
26 25 reximi z A ¬ z ˙ W z P z v z ˙ P ˙ v z A ¬ z ˙ W z ˙ P ˙ v
27 23 26 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T P Q v R F r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z ˙ P ˙ v