Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
11 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
12 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
13 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
14 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑣 ∈ 𝐴 ) |
15 |
|
simp2lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑣 ≤ 𝑊 ) |
16 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
17 |
|
nbrne2 |
⊢ ( ( 𝑣 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊 ) → 𝑣 ≠ 𝑃 ) |
18 |
17
|
necomd |
⊢ ( ( 𝑣 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊 ) → 𝑃 ≠ 𝑣 ) |
19 |
15 16 18
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ≠ 𝑣 ) |
20 |
14 19
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑃 ≠ 𝑣 ) ) |
21 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
22 |
1 2 4 5
|
4atex3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑃 ≠ 𝑣 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑣 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
23 |
9 10 11 12 11 13 20 21 22
|
syl233anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑣 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) ) |
24 |
|
simp3 |
⊢ ( ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑣 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) → 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) |
25 |
24
|
anim2i |
⊢ ( ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑣 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) → ( ¬ 𝑧 ≤ 𝑊 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) |
26 |
25
|
reximi |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑣 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) |
27 |
23 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑣 ) ) ) |