| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 10 |  | simp11r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 11 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 12 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 13 |  | simp31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 14 |  | simp2ll | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 15 |  | simp2lr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑣  ≤  𝑊 ) | 
						
							| 16 |  | simp12r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ¬  𝑃  ≤  𝑊 ) | 
						
							| 17 |  | nbrne2 | ⊢ ( ( 𝑣  ≤  𝑊  ∧  ¬  𝑃  ≤  𝑊 )  →  𝑣  ≠  𝑃 ) | 
						
							| 18 | 17 | necomd | ⊢ ( ( 𝑣  ≤  𝑊  ∧  ¬  𝑃  ≤  𝑊 )  →  𝑃  ≠  𝑣 ) | 
						
							| 19 | 15 16 18 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑣 ) | 
						
							| 20 | 14 19 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑃  ≠  𝑣 ) ) | 
						
							| 21 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 22 | 1 2 4 5 | 4atex3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑣  ∈  𝐴  ∧  𝑃  ≠  𝑣 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑃  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 23 | 9 10 11 12 11 13 20 21 22 | syl233anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑃  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝑧  ≠  𝑃  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) )  →  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 25 | 24 | anim2i | ⊢ ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑃  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  →  ( ¬  𝑧  ≤  𝑊  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 26 | 25 | reximi | ⊢ ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑧  ≠  𝑃  ∧  𝑧  ≠  𝑣  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) | 
						
							| 27 | 23 26 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  𝑧  ≤  ( 𝑃  ∨  𝑣 ) ) ) |