Metamath Proof Explorer


Theorem cdlemg33c0

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
cdlemg31.n
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
Assertion cdlemg33c0
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ z .<_ ( P .\/ v ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemg31.n
 |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
9 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL )
10 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> W e. H )
11 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
12 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
13 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q )
14 simp2ll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v e. A )
15 simp2lr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> v .<_ W )
16 simp12r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W )
17 nbrne2
 |-  ( ( v .<_ W /\ -. P .<_ W ) -> v =/= P )
18 17 necomd
 |-  ( ( v .<_ W /\ -. P .<_ W ) -> P =/= v )
19 15 16 18 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= v )
20 14 19 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( v e. A /\ P =/= v ) )
21 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
22 1 2 4 5 4atex3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P =/= Q /\ ( v e. A /\ P =/= v ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= P /\ z =/= v /\ z .<_ ( P .\/ v ) ) ) )
23 9 10 11 12 11 13 20 21 22 syl233anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( z =/= P /\ z =/= v /\ z .<_ ( P .\/ v ) ) ) )
24 simp3
 |-  ( ( z =/= P /\ z =/= v /\ z .<_ ( P .\/ v ) ) -> z .<_ ( P .\/ v ) )
25 24 anim2i
 |-  ( ( -. z .<_ W /\ ( z =/= P /\ z =/= v /\ z .<_ ( P .\/ v ) ) ) -> ( -. z .<_ W /\ z .<_ ( P .\/ v ) ) )
26 25 reximi
 |-  ( E. z e. A ( -. z .<_ W /\ ( z =/= P /\ z =/= v /\ z .<_ ( P .\/ v ) ) ) -> E. z e. A ( -. z .<_ W /\ z .<_ ( P .\/ v ) ) )
27 23 26 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ v =/= ( R ` F ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ z .<_ ( P .\/ v ) ) )