Metamath Proof Explorer


Theorem cdlemg28b

Description: Part of proof of Lemma G of Crawley p. 116. Second equality of the equation of line 14 on p. 117. Note that -. z .<_ W is redundant here (but simplifies cdlemg28 .) (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
cdlemg31.n
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
cdlemg33.o
|- O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
Assertion cdlemg28b
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 cdlemg31.n
 |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) )
9 cdlemg33.o
 |-  O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) )
10 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( K e. HL /\ W e. H ) )
11 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
12 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( z e. A /\ -. z .<_ W ) )
13 simp23l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> F e. T )
14 simp23r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> G e. T )
15 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
16 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z e. A )
17 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( v e. A /\ v .<_ W ) )
18 simp311
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z =/= N )
19 13 18 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( F e. T /\ z =/= N ) )
20 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> v =/= ( R ` F ) )
21 simp313
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z .<_ ( P .\/ v ) )
22 simp33l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( F ` P ) =/= P )
23 1 2 3 4 5 6 7 8 cdlemg27b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. ( R ` F ) .<_ ( Q .\/ z ) )
24 15 16 17 19 20 21 22 23 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> -. ( R ` F ) .<_ ( Q .\/ z ) )
25 simp312
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z =/= O )
26 14 25 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( G e. T /\ z =/= O ) )
27 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> v =/= ( R ` G ) )
28 simp33r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( G ` P ) =/= P )
29 1 2 3 4 5 6 7 9 cdlemg27b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( G e. T /\ z =/= O ) ) /\ ( v =/= ( R ` G ) /\ z .<_ ( P .\/ v ) /\ ( G ` P ) =/= P ) ) -> -. ( R ` G ) .<_ ( Q .\/ z ) )
30 15 16 17 26 27 21 28 29 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> -. ( R ` G ) .<_ ( Q .\/ z ) )
31 1 2 3 4 5 6 7 cdlemg26zz
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. ( R ` F ) .<_ ( Q .\/ z ) /\ -. ( R ` G ) .<_ ( Q .\/ z ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) )
32 10 11 12 13 14 24 30 31 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) )