| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemg31.n |  |-  N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) | 
						
							| 9 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 11 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 12 |  | simp22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( v e. A /\ v .<_ W ) ) | 
						
							| 13 |  | simp23l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> F e. T ) | 
						
							| 14 |  | simp31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> v =/= ( R ` F ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 | cdlemg31b0a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( N e. A \/ N = ( 0. ` K ) ) ) | 
						
							| 16 | 9 10 11 12 13 14 15 | syl132anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( N e. A \/ N = ( 0. ` K ) ) ) | 
						
							| 17 |  | simp23r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z =/= N ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ ( N e. A \/ N = ( 0. ` K ) ) ) -> z =/= N ) | 
						
							| 19 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> K e. HL ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> K e. HL ) | 
						
							| 21 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> K e. AtLat ) | 
						
							| 23 |  | simpl21 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> z e. A ) | 
						
							| 24 |  | simpr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> N e. A ) | 
						
							| 25 | 1 4 | atcmp |  |-  ( ( K e. AtLat /\ z e. A /\ N e. A ) -> ( z .<_ N <-> z = N ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> ( z .<_ N <-> z = N ) ) | 
						
							| 27 | 26 | necon3bbid |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N e. A ) -> ( -. z .<_ N <-> z =/= N ) ) | 
						
							| 28 | 19 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> K e. HL ) | 
						
							| 29 | 28 21 | syl |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> K e. AtLat ) | 
						
							| 30 |  | simpl21 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> z e. A ) | 
						
							| 31 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 32 | 1 31 4 | atnle0 |  |-  ( ( K e. AtLat /\ z e. A ) -> -. z .<_ ( 0. ` K ) ) | 
						
							| 33 | 29 30 32 | syl2anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> -. z .<_ ( 0. ` K ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> N = ( 0. ` K ) ) | 
						
							| 35 | 34 | breq2d |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> ( z .<_ N <-> z .<_ ( 0. ` K ) ) ) | 
						
							| 36 | 33 35 | mtbird |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> -. z .<_ N ) | 
						
							| 37 | 17 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> z =/= N ) | 
						
							| 38 | 36 37 | 2thd |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ N = ( 0. ` K ) ) -> ( -. z .<_ N <-> z =/= N ) ) | 
						
							| 39 | 27 38 | jaodan |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ ( N e. A \/ N = ( 0. ` K ) ) ) -> ( -. z .<_ N <-> z =/= N ) ) | 
						
							| 40 | 18 39 | mpbird |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) /\ ( N e. A \/ N = ( 0. ` K ) ) ) -> -. z .<_ N ) | 
						
							| 41 | 16 40 | mpdan |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. z .<_ N ) | 
						
							| 42 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z .<_ ( P .\/ v ) ) | 
						
							| 43 | 19 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> K e. Lat ) | 
						
							| 44 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z e. A ) | 
						
							| 45 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 46 | 45 4 | atbase |  |-  ( z e. A -> z e. ( Base ` K ) ) | 
						
							| 47 | 44 46 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z e. ( Base ` K ) ) | 
						
							| 48 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> P e. A ) | 
						
							| 49 |  | simp22l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> v e. A ) | 
						
							| 50 | 45 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ v e. A ) -> ( P .\/ v ) e. ( Base ` K ) ) | 
						
							| 51 | 19 48 49 50 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P .\/ v ) e. ( Base ` K ) ) | 
						
							| 52 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> Q e. A ) | 
						
							| 53 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( F ` P ) =/= P ) | 
						
							| 54 | 1 4 5 6 7 | trlat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 55 | 9 10 13 53 54 | syl112anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 56 | 45 2 4 | hlatjcl |  |-  ( ( K e. HL /\ Q e. A /\ ( R ` F ) e. A ) -> ( Q .\/ ( R ` F ) ) e. ( Base ` K ) ) | 
						
							| 57 | 19 52 55 56 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( Q .\/ ( R ` F ) ) e. ( Base ` K ) ) | 
						
							| 58 | 45 1 3 | latlem12 |  |-  ( ( K e. Lat /\ ( z e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) /\ ( Q .\/ ( R ` F ) ) e. ( Base ` K ) ) ) -> ( ( z .<_ ( P .\/ v ) /\ z .<_ ( Q .\/ ( R ` F ) ) ) <-> z .<_ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) ) ) | 
						
							| 59 | 43 47 51 57 58 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( z .<_ ( P .\/ v ) /\ z .<_ ( Q .\/ ( R ` F ) ) ) <-> z .<_ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) ) ) | 
						
							| 60 | 8 | breq2i |  |-  ( z .<_ N <-> z .<_ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) ) | 
						
							| 61 | 59 60 | bitr4di |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( z .<_ ( P .\/ v ) /\ z .<_ ( Q .\/ ( R ` F ) ) ) <-> z .<_ N ) ) | 
						
							| 62 | 61 | biimpd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( z .<_ ( P .\/ v ) /\ z .<_ ( Q .\/ ( R ` F ) ) ) -> z .<_ N ) ) | 
						
							| 63 | 42 62 | mpand |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( z .<_ ( Q .\/ ( R ` F ) ) -> z .<_ N ) ) | 
						
							| 64 | 41 63 | mtod |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. z .<_ ( Q .\/ ( R ` F ) ) ) | 
						
							| 65 | 1 5 6 7 | trlle |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) | 
						
							| 66 | 9 13 65 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) .<_ W ) | 
						
							| 67 |  | simp13r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. Q .<_ W ) | 
						
							| 68 |  | nbrne2 |  |-  ( ( ( R ` F ) .<_ W /\ -. Q .<_ W ) -> ( R ` F ) =/= Q ) | 
						
							| 69 | 66 67 68 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) =/= Q ) | 
						
							| 70 | 1 2 4 | hlatexch1 |  |-  ( ( K e. HL /\ ( ( R ` F ) e. A /\ z e. A /\ Q e. A ) /\ ( R ` F ) =/= Q ) -> ( ( R ` F ) .<_ ( Q .\/ z ) -> z .<_ ( Q .\/ ( R ` F ) ) ) ) | 
						
							| 71 | 19 55 44 52 69 70 | syl131anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( R ` F ) .<_ ( Q .\/ z ) -> z .<_ ( Q .\/ ( R ` F ) ) ) ) | 
						
							| 72 | 64 71 | mtod |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( z e. A /\ ( v e. A /\ v .<_ W ) /\ ( F e. T /\ z =/= N ) ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. ( R ` F ) .<_ ( Q .\/ z ) ) |