Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp11 |
|
10 |
|
simp12 |
|
11 |
|
simp13 |
|
12 |
|
simp22 |
|
13 |
|
simp23l |
|
14 |
|
simp31 |
|
15 |
1 2 3 4 5 6 7 8
|
cdlemg31b0a |
|
16 |
9 10 11 12 13 14 15
|
syl132anc |
|
17 |
|
simp23r |
|
18 |
17
|
adantr |
|
19 |
|
simp11l |
|
20 |
19
|
adantr |
|
21 |
|
hlatl |
|
22 |
20 21
|
syl |
|
23 |
|
simpl21 |
|
24 |
|
simpr |
|
25 |
1 4
|
atcmp |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
26
|
necon3bbid |
|
28 |
19
|
adantr |
|
29 |
28 21
|
syl |
|
30 |
|
simpl21 |
|
31 |
|
eqid |
|
32 |
1 31 4
|
atnle0 |
|
33 |
29 30 32
|
syl2anc |
|
34 |
|
simpr |
|
35 |
34
|
breq2d |
|
36 |
33 35
|
mtbird |
|
37 |
17
|
adantr |
|
38 |
36 37
|
2thd |
|
39 |
27 38
|
jaodan |
|
40 |
18 39
|
mpbird |
|
41 |
16 40
|
mpdan |
|
42 |
|
simp32 |
|
43 |
19
|
hllatd |
|
44 |
|
simp21 |
|
45 |
|
eqid |
|
46 |
45 4
|
atbase |
|
47 |
44 46
|
syl |
|
48 |
|
simp12l |
|
49 |
|
simp22l |
|
50 |
45 2 4
|
hlatjcl |
|
51 |
19 48 49 50
|
syl3anc |
|
52 |
|
simp13l |
|
53 |
|
simp33 |
|
54 |
1 4 5 6 7
|
trlat |
|
55 |
9 10 13 53 54
|
syl112anc |
|
56 |
45 2 4
|
hlatjcl |
|
57 |
19 52 55 56
|
syl3anc |
|
58 |
45 1 3
|
latlem12 |
|
59 |
43 47 51 57 58
|
syl13anc |
|
60 |
8
|
breq2i |
|
61 |
59 60
|
bitr4di |
|
62 |
61
|
biimpd |
|
63 |
42 62
|
mpand |
|
64 |
41 63
|
mtod |
|
65 |
1 5 6 7
|
trlle |
|
66 |
9 13 65
|
syl2anc |
|
67 |
|
simp13r |
|
68 |
|
nbrne2 |
|
69 |
66 67 68
|
syl2anc |
|
70 |
1 2 4
|
hlatexch1 |
|
71 |
19 55 44 52 69 70
|
syl131anc |
|
72 |
64 71
|
mtod |
|