Metamath Proof Explorer


Theorem cdlemg27b

Description: TODO: Fix comment. (Contributed by NM, 28-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
Assertion cdlemg27b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ R F ˙ Q ˙ z

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P K HL W H
10 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P P A ¬ P ˙ W
11 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P Q A ¬ Q ˙ W
12 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P v A v ˙ W
13 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P F T
14 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P v R F
15 1 2 3 4 5 6 7 8 cdlemg31b0a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F N A N = 0. K
16 9 10 11 12 13 14 15 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A N = 0. K
17 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z N
18 17 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A N = 0. K z N
19 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P K HL
20 19 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A K HL
21 hlatl K HL K AtLat
22 20 21 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A K AtLat
23 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A z A
24 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A N A
25 1 4 atcmp K AtLat z A N A z ˙ N z = N
26 22 23 24 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A z ˙ N z = N
27 26 necon3bbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A ¬ z ˙ N z N
28 19 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K K HL
29 28 21 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K K AtLat
30 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K z A
31 eqid 0. K = 0. K
32 1 31 4 atnle0 K AtLat z A ¬ z ˙ 0. K
33 29 30 32 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K ¬ z ˙ 0. K
34 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K N = 0. K
35 34 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K z ˙ N z ˙ 0. K
36 33 35 mtbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K ¬ z ˙ N
37 17 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K z N
38 36 37 2thd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N = 0. K ¬ z ˙ N z N
39 27 38 jaodan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A N = 0. K ¬ z ˙ N z N
40 18 39 mpbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P N A N = 0. K ¬ z ˙ N
41 16 40 mpdan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ z ˙ N
42 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z ˙ P ˙ v
43 19 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P K Lat
44 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z A
45 eqid Base K = Base K
46 45 4 atbase z A z Base K
47 44 46 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z Base K
48 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P P A
49 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P v A
50 45 2 4 hlatjcl K HL P A v A P ˙ v Base K
51 19 48 49 50 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P P ˙ v Base K
52 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P Q A
53 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P F P P
54 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
55 9 10 13 53 54 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P R F A
56 45 2 4 hlatjcl K HL Q A R F A Q ˙ R F Base K
57 19 52 55 56 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P Q ˙ R F Base K
58 45 1 3 latlem12 K Lat z Base K P ˙ v Base K Q ˙ R F Base K z ˙ P ˙ v z ˙ Q ˙ R F z ˙ P ˙ v ˙ Q ˙ R F
59 43 47 51 57 58 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z ˙ P ˙ v z ˙ Q ˙ R F z ˙ P ˙ v ˙ Q ˙ R F
60 8 breq2i z ˙ N z ˙ P ˙ v ˙ Q ˙ R F
61 59 60 bitr4di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z ˙ P ˙ v z ˙ Q ˙ R F z ˙ N
62 61 biimpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z ˙ P ˙ v z ˙ Q ˙ R F z ˙ N
63 42 62 mpand K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P z ˙ Q ˙ R F z ˙ N
64 41 63 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ z ˙ Q ˙ R F
65 1 5 6 7 trlle K HL W H F T R F ˙ W
66 9 13 65 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P R F ˙ W
67 simp13r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ Q ˙ W
68 nbrne2 R F ˙ W ¬ Q ˙ W R F Q
69 66 67 68 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P R F Q
70 1 2 4 hlatexch1 K HL R F A z A Q A R F Q R F ˙ Q ˙ z z ˙ Q ˙ R F
71 19 55 44 52 69 70 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P R F ˙ Q ˙ z z ˙ Q ˙ R F
72 64 71 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ R F ˙ Q ˙ z