| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | cdlemg31.n |  | 
						
							| 9 |  | simp1l |  | 
						
							| 10 |  | simp21l |  | 
						
							| 11 |  | simp23l |  | 
						
							| 12 |  | simp22l |  | 
						
							| 13 |  | simp1 |  | 
						
							| 14 |  | simp3l |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 4 5 6 7 | trlator0 |  | 
						
							| 17 | 13 14 16 | syl2anc |  | 
						
							| 18 |  | simp22 |  | 
						
							| 19 | 1 5 6 7 | trlle |  | 
						
							| 20 | 13 14 19 | syl2anc |  | 
						
							| 21 | 17 20 | jca |  | 
						
							| 22 |  | simp23 |  | 
						
							| 23 |  | simp3r |  | 
						
							| 24 | 23 | necomd |  | 
						
							| 25 | 1 2 15 4 5 | lhp2at0ne |  | 
						
							| 26 | 13 18 10 21 22 24 25 | syl321anc |  | 
						
							| 27 | 26 | necomd |  | 
						
							| 28 | 2 3 15 4 | 2at0mat0 |  | 
						
							| 29 | 9 10 11 12 17 27 28 | syl33anc |  | 
						
							| 30 | 8 | eleq1i |  | 
						
							| 31 | 8 | eqeq1i |  | 
						
							| 32 | 30 31 | orbi12i |  | 
						
							| 33 | 29 32 | sylibr |  |