Metamath Proof Explorer


Theorem cdlemg31b0a

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
Assertion cdlemg31b0a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F N A N = 0. K

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F K HL
10 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F P A
11 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F v A
12 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F Q A
13 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F K HL W H
14 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F T
15 eqid 0. K = 0. K
16 15 4 5 6 7 trlator0 K HL W H F T R F A R F = 0. K
17 13 14 16 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F R F A R F = 0. K
18 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F Q A ¬ Q ˙ W
19 1 5 6 7 trlle K HL W H F T R F ˙ W
20 13 14 19 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F R F ˙ W
21 17 20 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F R F A R F = 0. K R F ˙ W
22 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F v A v ˙ W
23 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F v R F
24 23 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F R F v
25 1 2 15 4 5 lhp2at0ne K HL W H Q A ¬ Q ˙ W P A R F A R F = 0. K R F ˙ W v A v ˙ W R F v Q ˙ R F P ˙ v
26 13 18 10 21 22 24 25 syl321anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F Q ˙ R F P ˙ v
27 26 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F P ˙ v Q ˙ R F
28 2 3 15 4 2at0mat0 K HL P A v A Q A R F A R F = 0. K P ˙ v Q ˙ R F P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
29 9 10 11 12 17 27 28 syl33anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
30 8 eleq1i N A P ˙ v ˙ Q ˙ R F A
31 8 eqeq1i N = 0. K P ˙ v ˙ Q ˙ R F = 0. K
32 30 31 orbi12i N A N = 0. K P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
33 29 32 sylibr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F N A N = 0. K