Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemg31.n |
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) |
9 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> K e. HL ) |
10 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> P e. A ) |
11 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> v e. A ) |
12 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> Q e. A ) |
13 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> F e. T ) |
15 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
16 |
15 4 5 6 7
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A \/ ( R ` F ) = ( 0. ` K ) ) ) |
17 |
13 14 16
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( ( R ` F ) e. A \/ ( R ` F ) = ( 0. ` K ) ) ) |
18 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
19 |
1 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) |
20 |
13 14 19
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( R ` F ) .<_ W ) |
21 |
17 20
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( ( ( R ` F ) e. A \/ ( R ` F ) = ( 0. ` K ) ) /\ ( R ` F ) .<_ W ) ) |
22 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( v e. A /\ v .<_ W ) ) |
23 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> v =/= ( R ` F ) ) |
24 |
23
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( R ` F ) =/= v ) |
25 |
1 2 15 4 5
|
lhp2at0ne |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P e. A ) /\ ( ( ( ( R ` F ) e. A \/ ( R ` F ) = ( 0. ` K ) ) /\ ( R ` F ) .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( R ` F ) =/= v ) -> ( Q .\/ ( R ` F ) ) =/= ( P .\/ v ) ) |
26 |
13 18 10 21 22 24 25
|
syl321anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( Q .\/ ( R ` F ) ) =/= ( P .\/ v ) ) |
27 |
26
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( P .\/ v ) =/= ( Q .\/ ( R ` F ) ) ) |
28 |
2 3 15 4
|
2at0mat0 |
|- ( ( ( K e. HL /\ P e. A /\ v e. A ) /\ ( Q e. A /\ ( ( R ` F ) e. A \/ ( R ` F ) = ( 0. ` K ) ) /\ ( P .\/ v ) =/= ( Q .\/ ( R ` F ) ) ) ) -> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
29 |
9 10 11 12 17 27 28
|
syl33anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
30 |
8
|
eleq1i |
|- ( N e. A <-> ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A ) |
31 |
8
|
eqeq1i |
|- ( N = ( 0. ` K ) <-> ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) |
32 |
30 31
|
orbi12i |
|- ( ( N e. A \/ N = ( 0. ` K ) ) <-> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
33 |
29 32
|
sylibr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( F e. T /\ v =/= ( R ` F ) ) ) -> ( N e. A \/ N = ( 0. ` K ) ) ) |