Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg31.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝑣 ∈ 𝐴 ) |
12 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝑄 ∈ 𝐴 ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐹 ∈ 𝑇 ) |
15 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
16 |
15 4 5 6 7
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
17 |
13 14 16
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
18 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
19 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
20 |
13 14 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
21 |
17 20
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) ) |
22 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) |
23 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) |
24 |
23
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ 𝑣 ) |
25 |
1 2 15 4 5
|
lhp2at0ne |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ 𝑣 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( 𝑃 ∨ 𝑣 ) ) |
26 |
13 18 10 21 22 24 25
|
syl321anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( 𝑃 ∨ 𝑣 ) ) |
27 |
26
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑃 ∨ 𝑣 ) ≠ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
28 |
2 3 15 4
|
2at0mat0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ∨ 𝑣 ) ≠ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
29 |
9 10 11 12 17 27 28
|
syl33anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
30 |
8
|
eleq1i |
⊢ ( 𝑁 ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ) |
31 |
8
|
eqeq1i |
⊢ ( 𝑁 = ( 0. ‘ 𝐾 ) ↔ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) |
32 |
30 31
|
orbi12i |
⊢ ( ( 𝑁 ∈ 𝐴 ∨ 𝑁 = ( 0. ‘ 𝐾 ) ) ↔ ( ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
33 |
29 32
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑣 ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑁 ∈ 𝐴 ∨ 𝑁 = ( 0. ‘ 𝐾 ) ) ) |