| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg31.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 9 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 10 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 |  | simp23l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 12 |  | simp22l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 13 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 15 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 16 | 15 4 5 6 7 | trlator0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∨  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 17 | 13 14 16 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∨  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 18 |  | simp22 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 19 | 1 5 6 7 | trlle | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 20 | 13 14 19 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 21 | 17 20 | jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∨  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) ) | 
						
							| 22 |  | simp23 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) ) | 
						
							| 23 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 24 | 23 | necomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ≠  𝑣 ) | 
						
							| 25 | 1 2 15 4 5 | lhp2at0ne | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ∈  𝐴 )  ∧  ( ( ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∨  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  𝑣 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ≠  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 26 | 13 18 10 21 22 24 25 | syl321anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ≠  ( 𝑃  ∨  𝑣 ) ) | 
						
							| 27 | 26 | necomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑃  ∨  𝑣 )  ≠  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 28 | 2 3 15 4 | 2at0mat0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝑄  ∈  𝐴  ∧  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ∨  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) )  ∧  ( 𝑃  ∨  𝑣 )  ≠  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ∈  𝐴  ∨  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 29 | 9 10 11 12 17 27 28 | syl33anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ∈  𝐴  ∨  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 30 | 8 | eleq1i | ⊢ ( 𝑁  ∈  𝐴  ↔  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ∈  𝐴 ) | 
						
							| 31 | 8 | eqeq1i | ⊢ ( 𝑁  =  ( 0. ‘ 𝐾 )  ↔  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 32 | 30 31 | orbi12i | ⊢ ( ( 𝑁  ∈  𝐴  ∨  𝑁  =  ( 0. ‘ 𝐾 ) )  ↔  ( ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  ∈  𝐴  ∨  ( ( 𝑃  ∨  𝑣 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 33 | 29 32 | sylibr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑣  ∈  𝐴  ∧  𝑣  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝑣  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑁  ∈  𝐴  ∨  𝑁  =  ( 0. ‘ 𝐾 ) ) ) |