Metamath Proof Explorer


Theorem cdlemg31b0a

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
Assertion cdlemg31b0a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝐴𝑁 = ( 0. ‘ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg31.n 𝑁 = ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) )
9 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ HL )
10 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝑃𝐴 )
11 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝑣𝐴 )
12 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝑄𝐴 )
13 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝐹𝑇 )
15 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
16 15 4 5 6 7 trlator0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) )
17 13 14 16 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) )
18 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
19 1 5 6 7 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) 𝑊 )
20 13 14 19 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐹 ) 𝑊 )
21 17 20 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑅𝐹 ) 𝑊 ) )
22 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑣𝐴𝑣 𝑊 ) )
23 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → 𝑣 ≠ ( 𝑅𝐹 ) )
24 23 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐹 ) ≠ 𝑣 )
25 1 2 15 4 5 lhp2at0ne ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑃𝐴 ) ∧ ( ( ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑅𝐹 ) 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝑅𝐹 ) ≠ 𝑣 ) → ( 𝑄 ( 𝑅𝐹 ) ) ≠ ( 𝑃 𝑣 ) )
26 13 18 10 21 22 24 25 syl321anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑄 ( 𝑅𝐹 ) ) ≠ ( 𝑃 𝑣 ) )
27 26 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 𝑣 ) ≠ ( 𝑄 ( 𝑅𝐹 ) ) )
28 2 3 15 4 2at0mat0 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴 ) ∧ ( 𝑄𝐴 ∧ ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 𝑣 ) ≠ ( 𝑄 ( 𝑅𝐹 ) ) ) ) → ( ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) )
29 9 10 11 12 17 27 28 syl33anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) )
30 8 eleq1i ( 𝑁𝐴 ↔ ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) ∈ 𝐴 )
31 8 eqeq1i ( 𝑁 = ( 0. ‘ 𝐾 ) ↔ ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) = ( 0. ‘ 𝐾 ) )
32 30 31 orbi12i ( ( 𝑁𝐴𝑁 = ( 0. ‘ 𝐾 ) ) ↔ ( ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑣 ) ( 𝑄 ( 𝑅𝐹 ) ) ) = ( 0. ‘ 𝐾 ) ) )
33 29 32 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑣𝐴𝑣 𝑊 ) ) ∧ ( 𝐹𝑇𝑣 ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝐴𝑁 = ( 0. ‘ 𝐾 ) ) )