Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemg31.n |
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) |
9 |
|
cdlemg33.o |
|- O = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` G ) ) ) |
10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
12 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( v e. A /\ v .<_ W ) ) |
13 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( z e. A /\ -. z .<_ W ) ) |
14 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> F e. T ) |
15 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> G e. T ) |
16 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) ) |
17 |
|
simp313 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z .<_ ( P .\/ v ) ) |
18 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) |
19 |
1 2 3 4 5 6 7
|
cdlemg28a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) ) |
20 |
10 11 12 13 14 15 16 17 18 19
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) ) |
21 |
1 2 3 4 5 6 7 8 9
|
cdlemg28b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) ) |
22 |
20 21
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ ( F e. T /\ G e. T ) ) /\ ( ( z =/= N /\ z =/= O /\ z .<_ ( P .\/ v ) ) /\ ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |