| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 10 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( z e. A /\ -. z .<_ W ) ) | 
						
							| 11 |  | simp22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> F e. T ) | 
						
							| 12 |  | simp23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> G e. T ) | 
						
							| 13 |  | simp1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) ) | 
						
							| 14 |  | simp21l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z e. A ) | 
						
							| 15 |  | simp31l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> v =/= ( R ` F ) ) | 
						
							| 16 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> z .<_ ( P .\/ v ) ) | 
						
							| 17 |  | simp33l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( F ` P ) =/= P ) | 
						
							| 18 | 1 2 3 4 5 6 7 | cdlemg27a |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. ( R ` F ) .<_ ( P .\/ z ) ) | 
						
							| 19 | 13 14 11 15 16 17 18 | syl123anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> -. ( R ` F ) .<_ ( P .\/ z ) ) | 
						
							| 20 |  | simp31r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> v =/= ( R ` G ) ) | 
						
							| 21 |  | simp33r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( G ` P ) =/= P ) | 
						
							| 22 | 1 2 3 4 5 6 7 | cdlemg27a |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ G e. T ) /\ ( v =/= ( R ` G ) /\ z .<_ ( P .\/ v ) /\ ( G ` P ) =/= P ) ) -> -. ( R ` G ) .<_ ( P .\/ z ) ) | 
						
							| 23 | 13 14 12 20 16 21 22 | syl123anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> -. ( R ` G ) .<_ ( P .\/ z ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cdlemg25zz |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( z e. A /\ -. z .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. ( R ` F ) .<_ ( P .\/ z ) /\ -. ( R ` G ) .<_ ( P .\/ z ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) ) | 
						
							| 25 | 8 9 10 11 12 19 23 24 | syl133anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ F e. T /\ G e. T ) /\ ( ( v =/= ( R ` F ) /\ v =/= ( R ` G ) ) /\ z .<_ ( P .\/ v ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( z .\/ ( F ` ( G ` z ) ) ) ./\ W ) ) |