Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemg31.n |
|- N = ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) |
9 |
|
simp11 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> K e. HL ) |
10 |
|
simp2ll |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> P e. A ) |
11 |
|
simp31l |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> v e. A ) |
12 |
|
simp2rl |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> Q e. A ) |
13 |
|
simp12 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> W e. H ) |
14 |
9 13
|
jca |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) |
15 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
16 |
|
simp13 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> F e. T ) |
17 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( F ` P ) =/= P ) |
18 |
1 4 5 6 7
|
trlat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) |
19 |
14 15 16 17 18
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) |
20 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
21 |
1 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) |
22 |
14 16 21
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) .<_ W ) |
23 |
19 22
|
jca |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( ( R ` F ) e. A /\ ( R ` F ) .<_ W ) ) |
24 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( v e. A /\ v .<_ W ) ) |
25 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> v =/= ( R ` F ) ) |
26 |
25
|
necomd |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) =/= v ) |
27 |
1 2 4 5
|
lhp2atne |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P e. A ) /\ ( ( ( R ` F ) e. A /\ ( R ` F ) .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( R ` F ) =/= v ) -> ( Q .\/ ( R ` F ) ) =/= ( P .\/ v ) ) |
28 |
14 20 10 23 24 26 27
|
syl321anc |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( Q .\/ ( R ` F ) ) =/= ( P .\/ v ) ) |
29 |
28
|
necomd |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( P .\/ v ) =/= ( Q .\/ ( R ` F ) ) ) |
30 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
31 |
2 3 30 4
|
2atmat0 |
|- ( ( ( K e. HL /\ P e. A /\ v e. A ) /\ ( Q e. A /\ ( R ` F ) e. A /\ ( P .\/ v ) =/= ( Q .\/ ( R ` F ) ) ) ) -> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
32 |
9 10 11 12 19 29 31
|
syl33anc |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
33 |
8
|
eleq1i |
|- ( N e. A <-> ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A ) |
34 |
8
|
eqeq1i |
|- ( N = ( 0. ` K ) <-> ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) |
35 |
33 34
|
orbi12i |
|- ( ( N e. A \/ N = ( 0. ` K ) ) <-> ( ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) e. A \/ ( ( P .\/ v ) ./\ ( Q .\/ ( R ` F ) ) ) = ( 0. ` K ) ) ) |
36 |
32 35
|
sylibr |
|- ( ( ( K e. HL /\ W e. H /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( v e. A /\ v .<_ W ) /\ v =/= ( R ` F ) /\ ( F ` P ) =/= P ) ) -> ( N e. A \/ N = ( 0. ` K ) ) ) |