Metamath Proof Explorer


Theorem cdlemg31b0N

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
Assertion cdlemg31b0N K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P N A N = 0. K

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 simp11 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P K HL
10 simp2ll K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P P A
11 simp31l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P v A
12 simp2rl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P Q A
13 simp12 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P W H
14 9 13 jca K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P K HL W H
15 simp2l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P P A ¬ P ˙ W
16 simp13 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P F T
17 simp33 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P F P P
18 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
19 14 15 16 17 18 syl112anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P R F A
20 simp2r K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P Q A ¬ Q ˙ W
21 1 5 6 7 trlle K HL W H F T R F ˙ W
22 14 16 21 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P R F ˙ W
23 19 22 jca K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P R F A R F ˙ W
24 simp31 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P v A v ˙ W
25 simp32 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P v R F
26 25 necomd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P R F v
27 1 2 4 5 lhp2atne K HL W H Q A ¬ Q ˙ W P A R F A R F ˙ W v A v ˙ W R F v Q ˙ R F P ˙ v
28 14 20 10 23 24 26 27 syl321anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P Q ˙ R F P ˙ v
29 28 necomd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P P ˙ v Q ˙ R F
30 eqid 0. K = 0. K
31 2 3 30 4 2atmat0 K HL P A v A Q A R F A P ˙ v Q ˙ R F P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
32 9 10 11 12 19 29 31 syl33anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
33 8 eleq1i N A P ˙ v ˙ Q ˙ R F A
34 8 eqeq1i N = 0. K P ˙ v ˙ Q ˙ R F = 0. K
35 33 34 orbi12i N A N = 0. K P ˙ v ˙ Q ˙ R F A P ˙ v ˙ Q ˙ R F = 0. K
36 32 35 sylibr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W v R F F P P N A N = 0. K