| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | cdlemg31.n |  | 
						
							| 9 |  | simp11 |  | 
						
							| 10 |  | simp2ll |  | 
						
							| 11 |  | simp31l |  | 
						
							| 12 |  | simp2rl |  | 
						
							| 13 |  | simp12 |  | 
						
							| 14 | 9 13 | jca |  | 
						
							| 15 |  | simp2l |  | 
						
							| 16 |  | simp13 |  | 
						
							| 17 |  | simp33 |  | 
						
							| 18 | 1 4 5 6 7 | trlat |  | 
						
							| 19 | 14 15 16 17 18 | syl112anc |  | 
						
							| 20 |  | simp2r |  | 
						
							| 21 | 1 5 6 7 | trlle |  | 
						
							| 22 | 14 16 21 | syl2anc |  | 
						
							| 23 | 19 22 | jca |  | 
						
							| 24 |  | simp31 |  | 
						
							| 25 |  | simp32 |  | 
						
							| 26 | 25 | necomd |  | 
						
							| 27 | 1 2 4 5 | lhp2atne |  | 
						
							| 28 | 14 20 10 23 24 26 27 | syl321anc |  | 
						
							| 29 | 28 | necomd |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 2 3 30 4 | 2atmat0 |  | 
						
							| 32 | 9 10 11 12 19 29 31 | syl33anc |  | 
						
							| 33 | 8 | eleq1i |  | 
						
							| 34 | 8 | eqeq1i |  | 
						
							| 35 | 33 34 | orbi12i |  | 
						
							| 36 | 32 35 | sylibr |  |