Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp11 |
|
10 |
|
simp2ll |
|
11 |
|
simp31l |
|
12 |
|
simp2rl |
|
13 |
|
simp12 |
|
14 |
9 13
|
jca |
|
15 |
|
simp2l |
|
16 |
|
simp13 |
|
17 |
|
simp33 |
|
18 |
1 4 5 6 7
|
trlat |
|
19 |
14 15 16 17 18
|
syl112anc |
|
20 |
|
simp2r |
|
21 |
1 5 6 7
|
trlle |
|
22 |
14 16 21
|
syl2anc |
|
23 |
19 22
|
jca |
|
24 |
|
simp31 |
|
25 |
|
simp32 |
|
26 |
25
|
necomd |
|
27 |
1 2 4 5
|
lhp2atne |
|
28 |
14 20 10 23 24 26 27
|
syl321anc |
|
29 |
28
|
necomd |
|
30 |
|
eqid |
|
31 |
2 3 30 4
|
2atmat0 |
|
32 |
9 10 11 12 19 29 31
|
syl33anc |
|
33 |
8
|
eleq1i |
|
34 |
8
|
eqeq1i |
|
35 |
33 34
|
orbi12i |
|
36 |
32 35
|
sylibr |
|