| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 10 |  | simp31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> v =/= ( R ` F ) ) | 
						
							| 11 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( v e. A /\ v .<_ W ) ) | 
						
							| 12 |  | simp2r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> F e. T ) | 
						
							| 13 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( F ` P ) =/= P ) | 
						
							| 14 | 1 4 5 6 7 | trlat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 15 | 8 9 12 13 14 | syl112anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 16 | 1 5 6 7 | trlle |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) | 
						
							| 17 | 8 12 16 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) .<_ W ) | 
						
							| 18 | 1 2 4 5 | lhp2atnle |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ v =/= ( R ` F ) ) /\ ( v e. A /\ v .<_ W ) /\ ( ( R ` F ) e. A /\ ( R ` F ) .<_ W ) ) -> -. ( R ` F ) .<_ ( P .\/ v ) ) | 
						
							| 19 | 8 9 10 11 15 17 18 | syl312anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. ( R ` F ) .<_ ( P .\/ v ) ) | 
						
							| 20 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> K e. HL ) | 
						
							| 21 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> P e. A ) | 
						
							| 22 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> v e. A ) | 
						
							| 23 | 1 2 4 | hlatlej1 |  |-  ( ( K e. HL /\ P e. A /\ v e. A ) -> P .<_ ( P .\/ v ) ) | 
						
							| 24 | 20 21 22 23 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> P .<_ ( P .\/ v ) ) | 
						
							| 25 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z .<_ ( P .\/ v ) ) | 
						
							| 26 | 20 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> K e. Lat ) | 
						
							| 27 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 28 | 27 4 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 29 | 21 28 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> P e. ( Base ` K ) ) | 
						
							| 30 |  | simp2l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z e. A ) | 
						
							| 31 | 27 4 | atbase |  |-  ( z e. A -> z e. ( Base ` K ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> z e. ( Base ` K ) ) | 
						
							| 33 | 27 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ v e. A ) -> ( P .\/ v ) e. ( Base ` K ) ) | 
						
							| 34 | 20 21 22 33 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P .\/ v ) e. ( Base ` K ) ) | 
						
							| 35 | 27 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ z e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ v ) /\ z .<_ ( P .\/ v ) ) <-> ( P .\/ z ) .<_ ( P .\/ v ) ) ) | 
						
							| 36 | 26 29 32 34 35 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( P .<_ ( P .\/ v ) /\ z .<_ ( P .\/ v ) ) <-> ( P .\/ z ) .<_ ( P .\/ v ) ) ) | 
						
							| 37 | 24 25 36 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P .\/ z ) .<_ ( P .\/ v ) ) | 
						
							| 38 | 27 4 | atbase |  |-  ( ( R ` F ) e. A -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 39 | 15 38 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 40 | 27 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ z e. A ) -> ( P .\/ z ) e. ( Base ` K ) ) | 
						
							| 41 | 20 21 30 40 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( P .\/ z ) e. ( Base ` K ) ) | 
						
							| 42 | 27 1 | lattr |  |-  ( ( K e. Lat /\ ( ( R ` F ) e. ( Base ` K ) /\ ( P .\/ z ) e. ( Base ` K ) /\ ( P .\/ v ) e. ( Base ` K ) ) ) -> ( ( ( R ` F ) .<_ ( P .\/ z ) /\ ( P .\/ z ) .<_ ( P .\/ v ) ) -> ( R ` F ) .<_ ( P .\/ v ) ) ) | 
						
							| 43 | 26 39 41 34 42 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( ( R ` F ) .<_ ( P .\/ z ) /\ ( P .\/ z ) .<_ ( P .\/ v ) ) -> ( R ` F ) .<_ ( P .\/ v ) ) ) | 
						
							| 44 | 37 43 | mpan2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> ( ( R ` F ) .<_ ( P .\/ z ) -> ( R ` F ) .<_ ( P .\/ v ) ) ) | 
						
							| 45 | 19 44 | mtod |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( v e. A /\ v .<_ W ) ) /\ ( z e. A /\ F e. T ) /\ ( v =/= ( R ` F ) /\ z .<_ ( P .\/ v ) /\ ( F ` P ) =/= P ) ) -> -. ( R ` F ) .<_ ( P .\/ z ) ) |