Step |
Hyp |
Ref |
Expression |
1 |
|
4that.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4that.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4that.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
4that.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ) |
7 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
8 |
|
simp32l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑇 ∈ 𝐴 ) |
9 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
10 |
1 2 3 4
|
4atex2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ∈ 𝐴 ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ) |
11 |
5 6 7 8 9 10
|
syl113anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ) |
12 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ HL ) |
13 |
|
hlcvl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CvLat ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ CvLat ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝐾 ∈ CvLat ) |
16 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ 𝐴 ) |
18 |
8
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑇 ∈ 𝐴 ) |
19 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
20 |
|
simp32r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑆 ≠ 𝑇 ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ≠ 𝑇 ) |
22 |
3 1 2
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑆 ≠ 𝑇 ) → ( ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ↔ ( 𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) |
23 |
15 17 18 19 21 22
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ↔ ( 𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ↔ ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) ) |
25 |
24
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) ) |
26 |
11 25
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) |