Metamath Proof Explorer


Theorem cdlemg31d

Description: Eliminate ( FP ) =/= P from cdlemg31c . TODO: Prove directly. TODO: do we need to eliminate ( FP ) =/= P ? It might be better to do this all at once at the end. See also cdlemg29 versus cdlemg28 . (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg31d KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNA¬N˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNA¬Q˙W
10 9 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=P¬Q˙W
11 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PKHLWH
12 simp21l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAPA
13 12 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PPA
14 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAQA
15 14 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PQA
16 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAvA
17 16 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PvA
18 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PFT
19 1 2 3 4 5 6 7 8 cdlemg31b KHLWHPAQAvAFTN˙Q˙RF
20 11 13 15 17 18 19 syl122anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PN˙Q˙RF
21 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PPA¬P˙W
22 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PFP=P
23 eqid 0.K=0.K
24 1 23 4 5 6 7 trl0 KHLWHPA¬P˙WFTFP=PRF=0.K
25 11 21 18 22 24 syl112anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PRF=0.K
26 25 oveq2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PQ˙RF=Q˙0.K
27 simp1l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAKHL
28 hlol KHLKOL
29 27 28 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAKOL
30 29 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PKOL
31 eqid BaseK=BaseK
32 31 4 atbase QAQBaseK
33 15 32 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PQBaseK
34 31 2 23 olj01 KOLQBaseKQ˙0.K=Q
35 30 33 34 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PQ˙0.K=Q
36 26 35 eqtrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PQ˙RF=Q
37 20 36 breqtrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PN˙Q
38 hlatl KHLKAtLat
39 27 38 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAKAtLat
40 39 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PKAtLat
41 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PNA
42 1 4 atcmp KAtLatNAQAN˙QN=Q
43 40 41 15 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PN˙QN=Q
44 37 43 mpbid KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PN=Q
45 44 breq1d KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=PN˙WQ˙W
46 10 45 mtbird KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFP=P¬N˙W
47 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPKHLWH
48 simpl21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPPA¬P˙W
49 simpl22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPQA¬Q˙W
50 simpl23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPvAv˙W
51 simpl31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPFT
52 simpl32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPvRF
53 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPFPP
54 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPPNA
55 1 2 3 4 5 6 7 8 cdlemg31c KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFPPNA¬N˙W
56 47 48 49 50 51 52 53 54 55 syl323anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAFPP¬N˙W
57 46 56 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNA¬N˙W