Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp22r |
|
10 |
9
|
adantr |
|
11 |
|
simpl1 |
|
12 |
|
simp21l |
|
13 |
12
|
adantr |
|
14 |
|
simp22l |
|
15 |
14
|
adantr |
|
16 |
|
simp23l |
|
17 |
16
|
adantr |
|
18 |
|
simpl31 |
|
19 |
1 2 3 4 5 6 7 8
|
cdlemg31b |
|
20 |
11 13 15 17 18 19
|
syl122anc |
|
21 |
|
simpl21 |
|
22 |
|
simpr |
|
23 |
|
eqid |
|
24 |
1 23 4 5 6 7
|
trl0 |
|
25 |
11 21 18 22 24
|
syl112anc |
|
26 |
25
|
oveq2d |
|
27 |
|
simp1l |
|
28 |
|
hlol |
|
29 |
27 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
|
eqid |
|
32 |
31 4
|
atbase |
|
33 |
15 32
|
syl |
|
34 |
31 2 23
|
olj01 |
|
35 |
30 33 34
|
syl2anc |
|
36 |
26 35
|
eqtrd |
|
37 |
20 36
|
breqtrd |
|
38 |
|
hlatl |
|
39 |
27 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
|
simpl33 |
|
42 |
1 4
|
atcmp |
|
43 |
40 41 15 42
|
syl3anc |
|
44 |
37 43
|
mpbid |
|
45 |
44
|
breq1d |
|
46 |
10 45
|
mtbird |
|
47 |
|
simpl1 |
|
48 |
|
simpl21 |
|
49 |
|
simpl22 |
|
50 |
|
simpl23 |
|
51 |
|
simpl31 |
|
52 |
|
simpl32 |
|
53 |
|
simpr |
|
54 |
|
simpl33 |
|
55 |
1 2 3 4 5 6 7 8
|
cdlemg31c |
|
56 |
47 48 49 50 51 52 53 54 55
|
syl323anc |
|
57 |
46 56
|
pm2.61dane |
|