Description: Eliminate ( FP ) =/= P from cdlemg31c . TODO: Prove directly. TODO: do we need to eliminate ( FP ) =/= P ? It might be better to do this all at once at the end. See also cdlemg29 versus cdlemg28 . (Contributed by NM, 29-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg12.l | |
|
cdlemg12.j | |
||
cdlemg12.m | |
||
cdlemg12.a | |
||
cdlemg12.h | |
||
cdlemg12.t | |
||
cdlemg12b.r | |
||
cdlemg31.n | |
||
Assertion | cdlemg31d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | |
|
2 | cdlemg12.j | |
|
3 | cdlemg12.m | |
|
4 | cdlemg12.a | |
|
5 | cdlemg12.h | |
|
6 | cdlemg12.t | |
|
7 | cdlemg12b.r | |
|
8 | cdlemg31.n | |
|
9 | simp22r | |
|
10 | 9 | adantr | |
11 | simpl1 | |
|
12 | simp21l | |
|
13 | 12 | adantr | |
14 | simp22l | |
|
15 | 14 | adantr | |
16 | simp23l | |
|
17 | 16 | adantr | |
18 | simpl31 | |
|
19 | 1 2 3 4 5 6 7 8 | cdlemg31b | |
20 | 11 13 15 17 18 19 | syl122anc | |
21 | simpl21 | |
|
22 | simpr | |
|
23 | eqid | |
|
24 | 1 23 4 5 6 7 | trl0 | |
25 | 11 21 18 22 24 | syl112anc | |
26 | 25 | oveq2d | |
27 | simp1l | |
|
28 | hlol | |
|
29 | 27 28 | syl | |
30 | 29 | adantr | |
31 | eqid | |
|
32 | 31 4 | atbase | |
33 | 15 32 | syl | |
34 | 31 2 23 | olj01 | |
35 | 30 33 34 | syl2anc | |
36 | 26 35 | eqtrd | |
37 | 20 36 | breqtrd | |
38 | hlatl | |
|
39 | 27 38 | syl | |
40 | 39 | adantr | |
41 | simpl33 | |
|
42 | 1 4 | atcmp | |
43 | 40 41 15 42 | syl3anc | |
44 | 37 43 | mpbid | |
45 | 44 | breq1d | |
46 | 10 45 | mtbird | |
47 | simpl1 | |
|
48 | simpl21 | |
|
49 | simpl22 | |
|
50 | simpl23 | |
|
51 | simpl31 | |
|
52 | simpl32 | |
|
53 | simpr | |
|
54 | simpl33 | |
|
55 | 1 2 3 4 5 6 7 8 | cdlemg31c | |
56 | 47 48 49 50 51 52 53 54 55 | syl323anc | |
57 | 46 56 | pm2.61dane | |