Metamath Proof Explorer


Theorem cdlemg29

Description: Eliminate ( FP ) =/= P and ( GP ) =/= P from cdlemg28 . TODO: would it be better to do this later? (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg29 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simpl11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PKHLWH
11 simpl12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PPA¬P˙W
12 simpl13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PQA¬Q˙W
13 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFT
14 13 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PFT
15 simp23r KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGT
16 15 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PGT
17 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PFP=P
18 1 2 3 4 5 6 7 cdlemg14f KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP˙W=Q˙FGQ˙W
19 10 11 12 14 16 17 18 syl123anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFP=PP˙FGP˙W=Q˙FGQ˙W
20 simpl11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PKHLWH
21 simpl12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PPA¬P˙W
22 simpl13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PQA¬Q˙W
23 13 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PFT
24 15 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PGT
25 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PGP=P
26 1 2 3 4 5 6 7 cdlemg14g KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP˙W=Q˙FGQ˙W
27 20 21 22 23 24 25 26 syl123anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGGP=PP˙FGP˙W=Q˙FGQ˙W
28 simpl1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPKHLWHPA¬P˙WQA¬Q˙W
29 simpl2 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPvAv˙WzA¬z˙WFTGT
30 simp31l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGzN
31 30 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzN
32 simp31r KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGzO
33 32 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzO
34 simpl32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPz˙P˙v
35 31 33 34 3jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzNzOz˙P˙v
36 simpl33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPvRFvRG
37 simpr KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPFPPGPP
38 1 2 3 4 5 6 7 8 9 cdlemg28 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPP˙FGP˙W=Q˙FGQ˙W
39 28 29 35 36 37 38 syl113anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPP˙FGP˙W=Q˙FGQ˙W
40 19 27 39 pm2.61da2ne KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGP˙FGP˙W=Q˙FGQ˙W