Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
cdlemg33.o |
|
10 |
|
simpl11 |
|
11 |
|
simpl12 |
|
12 |
|
simpl13 |
|
13 |
|
simp23l |
|
14 |
13
|
adantr |
|
15 |
|
simp23r |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
1 2 3 4 5 6 7
|
cdlemg14f |
|
19 |
10 11 12 14 16 17 18
|
syl123anc |
|
20 |
|
simpl11 |
|
21 |
|
simpl12 |
|
22 |
|
simpl13 |
|
23 |
13
|
adantr |
|
24 |
15
|
adantr |
|
25 |
|
simpr |
|
26 |
1 2 3 4 5 6 7
|
cdlemg14g |
|
27 |
20 21 22 23 24 25 26
|
syl123anc |
|
28 |
|
simpl1 |
|
29 |
|
simpl2 |
|
30 |
|
simp31l |
|
31 |
30
|
adantr |
|
32 |
|
simp31r |
|
33 |
32
|
adantr |
|
34 |
|
simpl32 |
|
35 |
31 33 34
|
3jca |
|
36 |
|
simpl33 |
|
37 |
|
simpr |
|
38 |
1 2 3 4 5 6 7 8 9
|
cdlemg28 |
|
39 |
28 29 35 36 37 38
|
syl113anc |
|
40 |
19 27 39
|
pm2.61da2ne |
|